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ARE YOU READY?

| Your first question (after you have decided you are
one of the people described by the title of this book)
probably will be: Am I ready for this encounter with
caloculus?

To help you answer this question for yourself, here
are a few of the assumpti. us the author had to make concern-
ing the state of your mathematical mowledge to guide him
in writing:

1. That you have a working knowledge of basic arithmetic.

2. That you have completed a course in basic algedbra.

3. That you are famil.ar with the general procedures

for plotting curves on a rectangular coordinate
system (this you should have learned from algebra.)

4. That in addition to the above you also are familiar

with the following conrepts from trigonometry:
the sine, cosine, tangent and secant functions;
the slope of a curve (or gradient) at a point, as
represented by the tangent; and various ways of
indicating the relationships between variables,
such as f£(x), ete.

Entry into a college course in calculus normally will
require that you have had a regular course in trigonometxy -
and, preferably, a course in plane analytic geometry as well ==
unless you take the latter course concurrently with you

caloculus course.
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To help you further in making a decision as to your
readiness you will find below a brief preliminary quiz
covering some of the items referred to above. When you
have completed this quiz, check your answers against those
given, If you find there are some things you thought you
kmew but didn't, be sure to look these up in a good text~
book before starting.

That way you will be sure you are ready.

Now turn to the next page for the Preliminary Quiz.




Preliminary Quiz

1. A constant is a quantity whose value is

(word describing the nature

of a constant).

2. A variable is a quantity that (ay, b or ¢). (a) keeps

changing

(b) can assume an
indefinite
number of val=-
ues in the
same problem

(¢) has only one
value for any
Ziven problem

5. A function is a relationship between two variableu
; constants

. ratios

4, A variable whose value depends upon the value

of another variable is known as a(n)

variable,

5. An independent variable determines the value true
of the relatei variable, false

6. The symbol < means .

7. The symbol > means .

8., The symbolE: means _ .

9. The symbolZ means .

10, A secant line is a liné that cuts a curve in txue
two points, false

11, A tangent line is a straight line that




12, The tangent represents the slope of a line, true
or of a curve at a particular point, false
13. In trigonometry, the tangent function is the
ratio of the side opposite an angle(in a

right triangle) to the side.
14, The expression f£(x) means .
15. Cartesian coordinates are rectangular true
coordinates, false
16. A polynomial is an algebraic expression that
has only positive whole numbers for the ex- erue
false
ponents of the variables.
17. Coeiflicient is the name given to a factor
(or group of factors) of a product to de- true
scribe its relation to the remaining factors. false
18. The number 3 in the expression n3 is called
the .
19. In the expression (3,2), representing the
coordinates of a point, what does the number
2 stand for?
20. The curve known as the parabola is an expo- true
nential curve. (Although it wouldn't hurt false

you ¢¢ look this up if you don't know the

answer, you needn't be too concerned as we

\,111 explain it in the text.)

Turn to the next page to check your answers.
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2.

3.
4.
5.
6.
Te
8,
9.
10.
11.

12,
13,
14,
15,
16,
17.
18,
19,
20.

Answers to Preliminary Quiz—

fixed

b; can assume an indefinite number of values
in the same problemn.
variables

dependent

true

less than

greater than

greater than or equal to
approximately equel to

true

is perpendicular to a radius at the point wheze
it touches a circle

true

ad jacent

function of x

true

true

true

exponent

the value of y, the ordinate

true; because the general equation for the parabola

is y2 = 4px. Unless you have studied plane analyti-

cal geometry you probably didn't know this. So don's

count it off if you go%t it wrong,




INTRODUCTION

First let me set your mind at_ease.

This is not a textbook. .t contains few of the
proofs so dear to the heart of the professional mathematician.

And it is a long way from being even a first course in calcu~
lus. On the contrary, it is purposely brief. ILike the cross-
hairs in the telescopic sight of a target rifle, locked on
the bullseye, it is aimed at just one thing: Helping you to
'understand the basic concepts upon which ecalculus is

founded. Nothing more.

You will be given explanations (hopefully the kind that
exp’ain), examples and, in appropriate places, a few problems
to work -- just eunough so that you yourself are satisfied
you understand the points being discussed.

The purpose of this book is, very simply, to give you a
running start on the subject, prevent you from getting left
behind in your regular (school) calculus course, and to keep
you from taking a fatal wrong step at the beginning because
you have misunderstood -- or not understood -- some important
concept. (This usually turns out to be the concept of a
limit,)

So relax and enjoy it! ﬁo one will be breathing down yocur
neck (at least not in this course). We will proceed at a
leisurely pace, taking one small step at a time. Hope=
fully you will be reading this book before starting your

college calculus course., But if not before, then at leust




as early as possible during-the course, as a supplement to
your required text.

At the conclusion of the chapters dealins with differ-
ential calculus, and-asain after the chapters on intepral
calculus, you will find short, self-administered quizzes,
Their only purpose is to enable you to check up on yourself
and see how well you have done. The results should improve’
yqur_mofale and help remove some of the trepidation that

normaily accompanies one's first dip into the sea of calculus,

NOTE

Much of this book has been put to=-
gether differently from most books you
have read. On many pages you will be
asked a question or asked to supply an
answer. ‘/hen this happens, turn to the
page indicated to check your answer and
to continue,

Because not all of the pages are
intended to be read consecutively, it
would be helpful o use a dbookmark to
help you to keep your place,

sow turn to page 1, please, and we'll get started.
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CHAPTER 1: WHY CALCULUS?

This is a question you deserve to have answered at the

outset,

If you have decided to study the subject then presumably
you lave some reason for doing so. Is it because it is a re-
quired course for some branch of engineering? Psychology?
Chemistry? Physics? Economics? Advanced basket weaving?

If 80 there is nothing wrong with that as a recason, except
that it would be helpful to know why it is a required course,

Are you studying calculus because you plan a career in
mathematics? If so, then I am sure you will need little con=-
vincing as to the importance of acquainting yourself with this
powerful mathematical tool. Doubtless you will have discovered
.already that calculus is, purely and simply, the starting
point of all advanced mathematics., Without it you are stopped
before you start. Without a working knowledge of arithmetic
you would not get far with algebra., Without a working know-
ledge of algebra you will not get far with calculus. And
without calculus you would not get far with any aspect of
mathematics beyond the elementary.

Why is this s0? Because'calculus enables the solution
of problems that cannot be solved in any other way. And
even problems that can be solved in other ways often can be

solved faster, more accurately, or both with the aid of

calculus,
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For example. How would you go about finding the speed,
at any exact instant of time, of a taseball thrown up into:the
air or dropped from a tall b.ilding? Remember, it will be
acted upon by gravity all the time it is in the air. Gravity
will constanily be trying to pull the ball back to the earth's
surface. The erfect on a ball thrown up into the air will be
to slow its passage upward and to accelerate its return to
earth, Thus its speed will be changing constantly under the
attractive force of gravity.

It would be possidble, of course, to estimate the ball's
actual speed at any particular mument oy calculating its average
speed during a very short period just before and Just after
the selected moment. (We will do this a little later on so
that you can see the method,) But this would yield only an
approximation of the “all's instantaneous speed, that is, its
speed at any specified instant of time.

The fact of the matter is that before the advent of
calculus there was no way to compute instantaneous gpeeds
of this nature either quickly nor accurately. Mathematicians
simply didn't lkmow how to do it; they did not have the necessary
mathematical tools. And this was most frustrating to them
because around the beginning of the 17th century (as you will
learn from Chapter 8) the natural scientists of that day were
studying the movement of pendulums, the planets, and all
kinds of moving objects quite intensively., The fact that many
such objects moved at varying speeds gave rise to the ques=

tion from which calculus was born, namely: "What is speed?"

©
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The question of speed is, then, the fundamental one
of calculus, But this does not mean that the use of cal=-
culus is confined snlely to the study of falling objects.
the movement of planets or purely mechanical matters. '
Another name for speed is rate of change, and the ques.-
tion of how to determine rates of change occurs in many
different situations. Thus, we find calculus applied to
all aspects of physics -- heat, light, sound, magnetism,
electricity, gravitation, the flow of water. Calculus
enabled James Clerk Maxwell to predict radio twenty years
before any physicist could deminstrate raiio experimentallyr.
Einstein's theory of 1916 and the atomic theories of the
nineteen-twenties relied heavily upon calculus.

In addition to these applied acpects of calculus it
also stimulated the development of several new branches of
pure mathematics. In fact, few branches of mathematics
have appeared in this century that do not use calculus.
Anyone attempting to study these subjects without a back=-
ground in calculus would be lost. Problems that can be
handled relatively simply with the aid of calculus be=-
come enormously difficult to solve == if indeed they cén
be solved == without it.

In addition to making it possible to handle dynamic
problems, such as the relationship between time, speed
and distance, the development of calculus also turned
out to supply a method for analyzing curves. The subject

of curves may seem & bit remote from that of speed. How=




Sy

ever, interestingly enough, the prodblem of finding
the rate of change of direction of a curve at a given
point (which is, of course, measured by the rate of change
of the slope of the curve at the point) is closely related
to the physical problem of finding the instantaneous
speed of a moving body. We will look into this matter a
little later on in the book.

Now although calculus grew from a fairly simple idea,
the idea of speed, there is a general impression that it
is a difficult and complex subject. And so it is == or
can be, Its difficulty and complexity depend upon how far
into the subject one attempts’to,go without proper prepar-
ation, The fundamental concepts are quite simple, and
these are all we will attempt to cover in this short treate
meﬁt of the subject. But there is practically no limit
to how far into it rne can go or how many applications
and new fields for exploration one can find by studying
it. The housewife who finds an electric egg-beater easy
to operate might experience some difficulty solving the
mechanical and electrical problems involved in designing
it.

Similarly, most people can, with a little effort,
learn how to apply calculus, successfully in solving many
kinds of practical problems, However, few would find it
easy to devise new applications or to apply it in the
more abstract and theoretical aspects of advanced mathe=-
matics,

How much of calculus should we, then, attempt to

cover in an introductory bvook?
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I believe the answer is: (1) only what the reader
needs to know in oxrder to be able to use the proccesses
of differentiation and integration where appropriate;
(2) enough so that he oan recosnize at least some situa=-
tions where its use is appropriate; and (3) sufficient
theory (that is, familiarization with the concepts upon
which calculus is based) to assist his passage through
a formal (college) course. |

Obviously this is the kind of compromise that will
please no one except, hopefully you == the learner. But
then this book was written for you, so we necd not con-
cern ourselves with any alarmed.denouncements by the
professional mathematicians. Dissatisfaction or failure
to learn on your part is, however, another matter. That
we are very much concerned about.

Chapter 8, to which we already have referred, con-

ins a brief historical review of the development of
mathematics and of the kinds of problems that early
mathematicians found it difficult or impossible to solve
until the advent of calculus. It has purposely placed
at the rear of the book so that you may read ..t or not,
depending upon the extent of your interest ir now calculus
came to be,

Let us now proceed to Chapter 2 where we will begin
our investigation into the rudimental aspects of calculus,

working our way slowly, step by step, from the presently

known to the presently unknown.




CHAPTER 2: SO WHAT'S NEW ABOVT LIMITS?

Let's begin with what you already know about limits.

Did you ever feel you were rcaching the "limit of your
patience?” This thought is based on the notion (which we
won't debate now) that each of us has only a fixed supply
of patience and that circumstances can make one feel he has
Just about used up his supply. A mathematical wvay of saying
this would be to say that our reserve (remaining amount )
of patience is apprcaching zero as a limit. And using
standard mathematical symbols we could express this situation
symbolically as: Patience —>0, (In case you have for-
gotten, the arrow means "approaches.")

Similarly, when we speak of reaching the "limit of our
endurance" we really are referring to the fact that our
supply of energy is fast approaching zero as a 1limit.

Thus: ZEndurance — 0,

Many of us have been faced with the dilemma of having
the amount of gasoline remaining in our gas tank "approach
zero" at an inopportune moment. We also ¥mow about military
limits (being "off limits"), speed limits, the ground bveing
the 1limit for a falling ball, cte.

These examples all have somethins in common. Can you
tell what it is? Try puttiné it into words, then check

your answer with the one given,

Turn to paze 8 to check your answer.
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ans, ''he concept of the distance from some fixed
position, or of a quantity, approaching zero
as a limit,

The foregoing exampleé are fine for developing an
intuitive notion of limits, But in order to be able to uge
this concent to help solve the kinds of problems that cone-
cerncd Newton, Leibnitz and most of the other early mathema=-
ticians back to the days of the Greeks, we will need to ex-
amine it more closely.

Notice that, for the most part, we tend to think in
terms of the portion of the original amount remaining, rather
than in terms of how near that remainder is to zero. Thus, we
are more concerned with the amount of patience used up rather
than with how much remains; how fast we are travelling rather
than how much our speed differs from tne speed 1limit; the
amount of gas left in the tank rather than how close this amount
is to zero., It is é subtle attitude of mind or way of think-
ina that we need to become aware of in our discussion of limits.,

The difference between our intuitive concept of limits

and the mathematical concept lies in this important fact:

In mathematics we are nrimarilv interested in the difference |

between some amount and the limit zero.

Consider this idea with relation to a specific speed
linit such as %5 mph., Usually we would say that as our car
speed increases, it approaches 35 mph as a limit, How could
you express tanis situvation in terms of the difference between
your speed and 35 mph?

Check your answer on page 10,




from poyo 10 Y=
ans. 88 S,—>35, D ,—>0 BEST COPY AVAILABLE

In the enswer given above Sc was used to represent
the speed of the car as it approached 35 mph and D, stood
for the difference between the speud of the car and the speed
limit of 35 mph (other symbols would serve as well).

No doubt you could think of many other examples, but
even these few are sufficient to allow us to arrive at some

kind of a general statement about such situations.

We might, for example, say something like this: As the
value of any quantity approaches some limit, the difference
between the velue and its limit approaches zero. Symbolically
expressed it would look something like this:

as Vq——> L, (V~L)—>0.

Vq stands for the value of the quantity (whatevér its
nature -=- gsllons, miles per hour, inches, oranges, light
years), L stands for the 1imit the value is approaching,
and V~L represents the amount by which the value differs.
from its limit at any given moment.

Now suppose you were climbing a mountain and your ob-
Jective was to reach a height of 5000 feet above sea level.
If we lat h represent your height above sea level and L
represent your altitude goal, how would you interpret in

words the following symbolicél representation «- or

mathematical model -= of this situation?
h—>L, (2~ L1L)—>0

Turn {0 psge 1l.
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ans., Ags your speed inerenses, the difference between
your speed and 35 mph approaches zero as a limit.
Do you sce the difference?
As we cormonly use the word "limit" we are chiefly

interested in the mamnitude or size of a quantity as it gets

nearer and nearer to some limit. In mathematics we are more

interested in the difference in or distance between the quan-

tity and its limit,
Relating these two notions we can say that as a quantity

approaches a limit, the difference between the quantity and its

limit annroaches zero as a limit,

In order to get used to seeing what this kind of re-
lationship looks like in mathematical shorthand, let's iry
expressing it symbolically, Take the case of tﬁe £filling gas
tank., As the quantity of rasoline in the tank approaches 16
gallons (the tank's capacity), the space remaining in the tank
approaches zero. We can express this as follows:

as Qg—->-16, sr—>o,
where QS represents the guantity of gas (in gallons) and Sr
represents the space remaining., Obviously all we have done is
to use the little arrows to mean "approaches" and invented a
few letter gymbol to renresent the values involved. Not very
technical and certainly not very formal mathematics, but it
says what we vant it to say and that'é the only nurnose of

any mathematical symbol.

ow suppose yon make up some symbols of your ovm and try
renpresenting the situation where your car speed iz apnroachine
the nosted speed limits of 35 mph, “hen you have somethin~ that
looks riznt to you, check it arainst the symbolo~y zhovm on
paze 9,

<l
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ans, Aa youf hei:sht above cea level apnroaches the roal
(1imit), the difference between your heirht and
your goal (limit) approaches zero.

Your inierpretation should have been generally similar
to that chowvm above., We could, of course, have used 5000
(feet) in place of the symbol L (for limit) since we happen to
know the numerical value of the limit in this instance, in
which case we would write

h —>-5000, (h~Ar 5000) —> 0,

If you are saying to yourself that these examples are
absurdly simple, you are cuite right. However, I urce you to
remember this with gratitude when we get to some that are not
quite so obvicus.

Now it's time to arnly the notion of limits to a practi-
cal problem in order to discover whether or not it really helps
solve (or makes possible the solution of) the problem. We are
going to approach it in a slow, relaxéd way so don't panic,

The problem we i1l consider actually is the basic one
that prodded Sir Isaadc Newton into develovins his method of
"fluxions" which, as mentioned earlier, later became Xnovm as
Calculus (or, more elegantly, the Caleulus)., Simply stated,
what nuzzled Jewton (among many other things, no doubt) was
how to determine the instantaneous velocity of a freely falling
body -- discounting the resistance of the air through which
it was passing,

Sound simple?

Turn to pace 12 and let's see,




A ball thrown into the air is an example of a body
under the influence of gravity, so let us suppose we throw
a baseball straicht up, What happens to it?

We know from experience that (depending upon how hard
we throw it) the ball will) go up for a certain distance, then
fall down to the ground, from which it started. Since the
effect of gravity is to "pull" objects dovm, it is perfectly
evident that while the ball is moving upward the effect of
gravity will be to rcduce its speed continuously until it
finally reachcs some maximum height, changes direction, and
beszins its return trip to earth., On the way dowvn gravity
will cause it to cpeed up as it approaches the gound., In
other words, our owvn experience tells us that the ball we

throw upward is going to be chansine velocity* all the time

it is in the air! Our job will be to determine its speed*

at any given instant, that is, its instantaneous sneed. To
do so we will use the concept of "approaching a limit" which
we have been discussing.

Where do we start?

It is not too difficult to determine the ball's heipmht
above the ground at any instant (assuming one knows the initial
conditions). Physicists have done it with great accuracy and
derived an equation that represents the height of the ball
with time,

suppose, therefore, we are given the information that
the expression h = 128t = 162 is the relation between

~matnematicians and physicizts make a distinction between the
terns "sneed" and "velocity," however for our purposes we
will consider them synonymous,




‘
¢ atpa - it 49 ¢ o8

ol e

BEST COPY AvaiLapy g

h (height) and t (time in seconds) for as long as the ball
is in the air. Let's see how this equation will help us

learn something about the velocity of the ball,

Here is the equation again: h = 128t - 16t2

Since h and t are related variables let us assign a
series of values to t, as the independent variable, and
see what values we get for h, As shown in the table below
we find that as t increases in value from zero to 4 seconds,
h increases also., However, once we get beyond 4 seconds,
for successive values of t we find that h decreases, until
finally, at t = 8 seconds, h becomes zero.

Plotting this we get the curve shown below,

_
14 Id .
(%) t h
o 0 0
»ee = 1 112
* 5 | 265
. |
5o -; 4 256
; 5 240
B : 6 192
~0o = 7 112
| 8 0
o -
!
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4

4
-
-t o amy

el g \

What was the ball's averare velocity during the first

4 - s 1 ' e
] - -

g i
. » o®

four seconds?

Turn to paze 14 to check your ansver,
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ans. 3%ﬁ = 64 fect per second

Remember: Avera~e velocitv is always found by dividing

the chanse in position of a body (that is, the distance moved)
duriny some period of time, by the elapnsed time., And since
the ball we threw up into the air traveled a distance (height)
of 256 feet in four seconds, its average velocity was 256
divided by 4, or 64 feet per second (fps).

Notice, however, that its actnal speed changed during
those four seconds., Durins the first second it traveled 112
feet, hence its averane speed between zero and one second was
112 feet per second., During the next second the ball traveled
a distance of 80 feet (192 minus 112), hence its averaze speed

durin~ that second was only 80 feet per second, Similarly, its

averaze speed between the second and third seconds vas 48 feet
ber second, and between the third and fourth seconds only 16
feet per second. Obviously it was slowing down in a hurry.
Now this is all very interesting as it relates to how
a ball chanses velocity under the influence of gravity, How=
aver, it doesn't answer our original question, namely: How

do we determine the bvall's exact sveed at any siven instant,

as distinsuished from its averare speed?

Let us suppose, for examnle, we wish to know the ball's
instantaneous velocity when t = 2 seconds. How would we go
about findinz it? Give it some thought and then check your

answer agzainst the one given on page 16.




From pogoe 10 -1He
ans. h = 128t - 16t2

Very well, Using this equation (h = 128t =- 16t2)
allows us to calculate the following values for h for the
selected values of t:

at t = 1.99 seconds, h = 191,3584 feet

at t = 2,00 seconds, h = 192,0000 feet

at t = 2.01 seconds, h = 192,6834 feet

Therefore, during the one-hundredth of a second before
t = 2, the ball traveled 192,0000 - 191,3584 or 0.6416 feet,
and this distance divided by one-hundredth of a second rives
us an average speed of 64.16 feet ner second., Similarly,
durinz the hundredth of a recond after t = 2, the ball traveled
192,6834 - 192,0000 or 0.6384 feet, which is ecuivalent %o
63.84 feet per second,

Adding the before and after speeds (64,16 + 63.84) and
dividins the sum by 2 we arrive at a "guesstimate" of 64 feet
per second as the ball's instantaneous velocity at t = 2, In
other words, the ball's speed at the instant t = 2 annears to

be approaching 64 feet per second 2s a limit!

In order to help you see this a bit more clearly we

have drawvm a graph of the situation, shown on'page 17.

Turn to page 17,




from parsec 14 -l b=

ans, We can do it by calenlatins averare velocities
over shorter and shorter periods of time, both
before and after t = 2,
I hove your answer (if you were able to come up with
one) was something like the one given above because this is
a very important point, Let's consider it for a moment.

Remember: Ve don't as yet have any direct way of calcu=-

lating the instantaneous velocity of the ball at = given point

in time, such as t = 2 seconds, So far, the only way we know
to firure its speed is to compute its avera-e speed during
some period of time very close to t = 2 seconds. The closest
to t = 2 would be some very small fraction of a second Just

beforc or just after t = 2 seconds,

Now since we kmow that its actual velocity is changing
constantly (remember that the ball is constantly accelerating
or decelerating under the force of gravity), its average speed
Just before and just after t = 2 will be different, however
slight that difference, But if we take a time interval suffi-
ciently small -- say, one-hundredth of a second == pefore and
after t = 2 to calculate its average speed, it seems reasonable
to assume that the ball's instantaneous speed at t = 2 should
be about midway between these two values,

To perform these calculations we will need our equation
siving the chanse in 2ltitude (distance) with time. Do you
recall what that equation is? See if you can write it down

in the s»ace provided below:

Turn to paze 15,
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Plotting the two values of h for t = 1,99 and t = 2,01

and connecting these with a straight line we get the time=-
altitide graph shown above,
It is again apparent that the velocity of the ball

just belore t = 2 was slightly grecter than 64 fps, and

just after t = 2 it was slightly less than 64 fps, which

tends to confirm our suspicions that at t = 2 its speed

was very close to 64 fps,




Now, did we Just do something we said couldn't be done
without ecalovlus? Did we, that is, find the instantaneous
velocity of the ball by algebraic methods? The answer is
No to both questions, Vhy?

Pirst, although we did find its velocity just before

and just after the selected instant of time t = 2 seconds,

we did pot find it for the exact instant t = 2! True, it
anvears that its speed at t = 2 is approachins 64 fps as a
limit (that is, not more nor less than 64 fps), but this is
not proof., It is an assumption on our part. Arnd even if we
took smaller and smaller intervals of time both before and
after t = 2 in which to calculaic the ball's average velocity,

it still would be Jjust that -~ an avera~e velocity* taken over

a period of time, however short -~ and not an instantaneous
velocitv,.

And second, if we were willing to be content with
assumptions of this kind, it certainly is a long, hard way
to find even an approximate answer.

Both Newton and Leibnitz, plagued by this and similar
nrotleme, felt there had to be a better way. And thanks
to their persistence and brilliant thinking they found that
W2y e

So limber up your thinking, pay close attention, and
we'll retrace the line of reasoning they went throvoh (each

ir nis owm way, actually, and independently of one another)

*Just a reminder of our definition on page 14 of averacze
velocity as the distance traveled between two points
in time, divided by the time interval,
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in discovering a beautifully simple way to find such things
a8 instantaneous rate-chanze velues, We will find out how

they learned to apply, in a nrecise way, the method of limits

wiich we were able only to approximate (and that laboriously)

in the foregoing exanmple,




CHAPTER 5: AN BASIER VAY TO SOLVE RATE PROBLEMS

We are going to examine, step by step, the relationship
between two variables as one changes with respect to the
other == and particularly the rate of this change., For
this purpose we will graph the situation; this will help
us visualize it better and also aid in considering it
algebraically,

Ve could use as an example the relationship h = 128t = 16t2,
the change of height with time of the ball thrown in the air,
discussed in the last chapter. Here we were concerned with
the two variables h and t, where h was expressed as a function
of t, the independent variable. We found, as you will recall,
that because the ball's height did not change uniformly with
time, its velocity was not constant., Hence the task of finding

ts velocity at any given instant was not an easy one., We will
return to this problem a little later on. But for our present
discussion we will use the even simpler relationship between
two variables, y = x2.
Do you remember from algebra what we call this kind

of a function? If so, write it in the space provided below.

Turn to page 22 to check your answer,
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ans. X power function, or square function.

Yes; it is usually termed a "power function"
for the obvious reason that the independent variable (x)
appears at a higher power than one, If you have studied
any plane analytical geometiry you may also recognize y = xz

as the equation for the curve known as a parabola.

Using the values for x shown in the Yy
table at the right, find the corresponding

”

values for y and plot the resulting ocurve

WiNnI-—=>10

on the coordinate system provided below,

Then check your results with those shown

on page 24,
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ans., T = tangent to curve at point P = % = slope
of tangent line T,

Thus we have found that it is convenient to represent
the slope of the curve at the point P by means of a line, T,
tangent to the curve at that point.

Now to assist us in our analysis let's add another,
randor point on the curve at some indeterminate distance
from P, This point we will designate as Q.

Connécting this point to P by a straight line gives us
the secant line, S, Observe this in the figure below.

(Note: In case you have for-
gotten, a secant may be defined J ' ' '
as a straight line that cuts a |
curve at two points.)

How should we designate the coordinates of the point P,
bearing in mind that P is any point on the curve?

Jurn to page 25.
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Note from your curve that, just as the velocitv of the
ball thrown into the air was constantly changing, so the direction
of the curve is constantly changing, reflecting the rate at
wnich one variable is changing with respect to the other. So
if we can find some way to determine the instantaneous rate of
change of direction at any point on the curve, we should be able
to use the same general approach to find the instantaneous rate
of change in the velocity of the ball., Why? Because althoush
the variables are different in each case and the physical situa-
tions they symbolize are different, mathematically the two equa=-
lions involved are essentially similar in nature!

But how do we find the direction of the curve?

Well, the direction of # curve at any point is, as you
nay recall, simply the slone of the curve at that point. There-
fore, what we really are seeking is the slope, or angle of
inclination, between the (positive direction of) the x-axis and
a line tangent to the curve at the given point,

In the sketch below, identify the line T and give the
ratio that represents the slope of T,

! ’

|

! T -
| E P=
; p & T=2
| - ¢

N7 C
Pl ,{g )

Turn to page 23 to check your answers.,
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ans, It provably woﬁld be vest to desirnate the
coordinates of P as (x,y) in order to
illustrate the general nature of this point.

We also need to indicate the position of the point Q
with relation to P. And since Q is a bit further from the
X~axis and y-axis than P, we designate the horizontal distance
from Q from P as Ax (delta x, that is, a little bit of x), and
the vertical distance as Ay (delta y, that is, a little bit
of ¥).

With this information added our graph now looke like

this:
Coordinates of P are: (x,y)
3*’A3 Coordinates of Q are:
(x + Ox), (y + AY)
Y

Try writing the equation for the slove of the secant
line S, keeping in mind that it will simply be the ratio of
the vertical distance to the horizontal distance between the

points P and Q.

Turn to page 26,
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ans. J3lope of S = ég%

NS

y+ 2y

_ qfﬁ&ﬁ) Slope of S = 152

=li)e
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AX

x .

x X+AX

It may appear as though we had only succeeded in

accunulating an odd assortment of letters. However, don't

be alarmed.,

help shortly.

They are all necessary and will be of great

You will note also that we have shaded in

the triangle of which the secant line S is the hypotenuse.

This was done to help focus your attention on it.

Now, remembering that the equation for our curve is

2

¥y = x~, substitute the coordinates of the point Q for x and

vy in this equation and see what kind of an expression you

zet.

lurn to page 28 to check your answver.
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2 —
ans.(x4q\x)2 = x° 4+ 2% Nx + ;3x2 (tle 1ittle bar, or
vinculum, over the Ax mcans that the exponent
appliis to the entire expression, not just to
the x).

What we are seeking by this algebraic procedure is a
relationsnip between OHx and Ay. Specifically, what we would
+ike to find is the ratio of Ay to &x (that is, the slope
of the secant line S) based on what we know about the equation
for the curve., Once we find this, you will see how we plan

to use it.

So, from the previous page we now have this information:

y = x° | (1)

and Y + Ay = x% + 2%+ OX + axe, (2)

But since from (1) we know the value of y in terms of

2

X, we can substitute x° for y in equation (2) and get:

Turn to page 29,
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ans., You should get (y +Ay) = (x + le)z

Once moxe,
The equation for the curve is y = x2.
The ccordinates of the point are:

x coordinate = x + Ax,

y coordinate =y + AYy.
Substituting these coordinates in the equation of the

curve gives us

(y + &Y) = (x + Ax)?

Your next step will be to expand the binominal (x + é&x)z.

Do so, and write your answer in {he space below,

(x + Ax)? = x° +

Turn to page 27 to check your answer,
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ans. x° + Ay = x% + 2% OX + NG
2

or, subtracting x“ from both sides,

AY = 2x-0% + BX°

Thus we now have:
QY = 2x« OX + Bx2
And dividing each term on both sides of the equation by

Ax glives us |
LY _
A% 2X + AOX
This looks a bit simpler, doesn't it?
~ But what docs it represent?
See if you can complete the followinz sentence:

The quantity 2x + AX represents

Turn to page 30 to verify your answer.
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ans. the slove of the secant line s,

BEST COPY AVAILABLE
I hope you got it rightl

Here it is again:

'%x! = 2x + Ox = slope of the secant line S.

Let's look at it once more in the graph below.

y + A3 ________ /()H‘AK

5”-’ oy
| 8% =

3

2X + OX

X

X+LX
Think about the secant line S again for a moment. What
it really represents, in effect, is the average sliope of the
curve between the two points P and Q, in much the same way
as the velocity value we found for the ball between any two
instants of time represented the avefaae velocity of the ball,
But just as we were seekin; the instantaneous velocity there,
here we are seelinz the exact slope of the curve at a specific

point -- not the averarge slope.

Continue on page 31.
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Yriy=r Slope of S
Ay _
R = 2x + Ax
5 —t
X
Very well then. Since what we really want is the slope

of the curve y = x2 at the precise point P, let us imagine

the point Q to move slowly along the curve towards P. What

we now get is a series of secants (shown above as S S

170 27

S35y Sy, etc.).

At the same time -~ since they are associated with
(define, actually) the position of the point Q =~ the dis=-
tances Ay and Ax grow shorter and shorter and our shaded
triangle diminishes in 3ize,

Obviously Q is approaching a limit (sound familiar?),
namely, the point P,

Yhat limit is the secant S approaching?

Turn to page 32 to check your answer,
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ans, The tangent line T,

p S x+2x

Of course; the secant S is approaching the tanzent line
T as a linit., 3By the time the point Q reaches point P, the
secant S (one end of which moves with Q) will coincide with
the tangent, T. Not only coincide with it; it will become the
tangent of the curve at the point P,

It is important that you see these two things very
clearly:

1« Q is approaching the point P as a limit!

2. The horizontal distance, Ax, between Q and P, is

approaching zero as a limit,

How do you think the expression for the slope of the

secant, -g—% = 2x + AX, will ‘change as Ax approaches zero

as a limit?

Turn to page 34.




™ ve v s o
1205 DALe

BEST COPY AVAILABLE

‘Y+dy

| {Lvy

To summarize, then:
1« As Q approaches P as a limit, and
2. AXx approaches zero as a limit, then
3. The gecant tends to become tangent 4o, and therefore
the slope of, the curve at the point P!
Using the arrow (symbol for "approaches") which we
used earlier, and the abbreviation "lim" for limit, we can
- express symbolically what is happening like this:

lim

OX -0 AX = X

Try putting this symbolical expression into words

just to make sure you understand its meaning.

Turn vo page 35 to check your answer,
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anse  The term AOx will drop out of the rirht-hand meuwber
of the equation, lcaving Jjust the term 2x.

True. But if Ax, approaching zero, becomes so infinitely

small that is in effect drops out of the right-hand member of the

AN A
equation A}cj_';“o AY. = 2x + Ax, leaving just 2x, it seems reasonable

to ask, VWhy doesn't it also drop out of the expression f%% on
the left-hand side?

The answer is: Because although Ax is approaching zero
as a limit, so is Ay. Hence (to oversimplify a matter that
involves the theorems of infinitesimals), the ratio f%% remains
intact.

Remenber: f%% , interpreted graphically, is approaching

tne tangent to the curve at the point P. This is a specific

LY
QX

approaching a real value, namely, the slope of the curve at the

nunver of value! So while Ax is approaching zero, is

point P, Therefore the diminishing value of Ax has a different

effect on the two sides of the equation.

Tura to pzage 33,
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ans, The limit of .%.‘L as Ax approaches zero
equals 2x,

"

Let's repeat the entire limit formula so we'll have it
in front of us:
lim AY . oy
Ax—>0 AX '
or, put into words, as Ax approaches zecso as a limit, the
limit of the ratio -é\-;cy- in the expression -%ch = 2X + AX
becomes 2x,

Now, what have we really discovered from all this in-
vestigating that we didn't know when we started out =- and
that is useful? It is important that you know before going
on, 80 see if you can select the best answer below,

1.« The secant becomes the tangent as Ax approaches

zero as a limit,

2, As the interval Ax of the independent variable

approaches the limit zero, the ratio -%% becomes

the instantaneous rate of change (or growth rate)

of the function y = x2

at the point P,
3. In the expression®L = 2x + Ax, the term Ax drops

out as Ax approaches zero as a limit,

Zurn to page 36 to check your answer,
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ans, No, 2,

Answers 1 and 3 both are correct statements, but
neither is the best answer nor the most significant thing
that occurs, |

The really important piece of informatiop is that we
have found an expression for the instantancous rate of change
of the curve =~ that is, of the function which the curve
represents -- at a specific point, or instant!

To understand the real siznificance of this, realize

that if v = x2 hanpened to represent the relationship

between the heipght and time incerements of the ball

thrown into the air, then 2x would represent the

instantaneous velocity (time rate of change) of the

ball at any given moment! ZExactly what we were trying
to find!

In other words, we have essentially done what we set out
to do, namely, discovered a means of calculating instantaneous
rate of change, or growth rate, of a function at a given instant,

Just to prove we've done it, we're going to go back
to our equation for the thrown ball in a moment and use it
to obtain the instantaneous velocity of the ball., But first '

'at!'s have a short reviewv,
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The above picture should look quite familiar to you

by now. Here then are the steps we went through in finding

the derivative (derived function, or instantaneous rate of

change) of y with respect to x.

Given function (curve) : y = x°
Coordinates of curve at Q : (x +Ax) and (y +Ay)
Substituting these values in 2
the given function we get : Yy +Ay = (x +Ax)
And expanding the right member Yy +4ay = x2 + 2xAx +Z_J'C2
Substituting x° for y (from our 2 2 )
original equation) we get : X" +A4Y = X~ + 2XeAX + AX
Subtracting x2 from both sides : AY = 2x48x + 'A_J'cz
And dividing both sides by Ax 3 %ch = 2X +AX
Finally, taking the limit of the

function as Ax—>0 (that is,

as.the point Q avproaches 1im Av W

point P on our graph) we get AX— 08% = 2x = the deriva-

tiveof Yy with respect to x

2

for the function y = x°, or
the instantaneous rate of
change of y with respect

to x.

Now turn to the next Page where we will discuss a final

important concept about the limiting value of the funection as

AX —> 0,
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The important cuncept we referred to on the preceding page
is this:

There is a special name for the limiting value of the

ratio 4¥ as &X approaches the limit zero. That name is

AX
"derivative" (did you notice where we used it on page 37

without explanation?). It is written as %% and read
as "dee=wy, dee~eks,"
In other words (or symbols), a derivative = %% =

lim Ay  dy . . AY
Ax->»0 AX® dx ;S’ then, the limitina value of the ratio ix °

Another way of saving this is to say that %% is the

customary expression for the derivative of y with

respect to x.

You have now been initiated into some of the mystical
language of calculus and can use the term "derivative" to
astound yow friends,

Seriously, and more importantly, you have been exposed
to what is probably the most fundamental concept in differ-
ential calculus: The concept of the derivative of a function.

In the next chapter we are going to look at some of the

ways in which this concept is applied to functions of

various kinds,
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CHAPTER 4: SOME HANDY SHORTCUTS

Tosether we have worked our way through the "delta
process" of finding the derivative of a function == not any
function, but the specific function y = x2.

We fouad, for example, that by this method of successive
approximation -= algebraically derived -~ we arrived at an
expression for the instantaneous rate of change of one variable
(y) with respect to another variable (x).

Thus the limit of the rate of change of y with respect

to x in the expression y = x2 was shown to be

limdy _ dy _
Ax—>0 Z% =3x = 2%

If we were to write this in the form of an instruction

rather than a result would you know what to do with it?
Let's find out,

Complete the following:

L(y=x?) =

Turn .to page 40 to check your answer.
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ans, 2x

I hope you figured it out for yourself, Here it is:
d — w2y _
5§(y = x°) = 2x.

We read this as: The derivative of y with respect to x
in the expression y = x2 is 2x, Other symbols used to denote
the derivative of y with respect to x are: y', £'(x), é%p}
and é%f(x). I(x) means, of course, the function (any
function) of x.

For example, in the expression y = x2, Y is the function

of x. Hence we could write this as f(x) = x2. However, we

usually use y to represent the dependent variable since it is
helpful to graph many of these functions and using y with x pro-
vides the two coordinates necessary for plotting in our familiar
Cartesian coordinate system.

Now let'!s consider the matter of finding the derivative
ol an expression strictly by algebraic means.

Look again at our oriszinal function, y = xz, and its
derivative, y' = 2x (using one of the new and convenient
notations for the derivative). How could we have manipulated

2

the term x%, mathematically, in order to tura it into 2x?

That is, what would we have had to do to it?

Turn to page 42 to check your answer.
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ans. y!' = 3x2

Did you get it right?

Let's do it together to make sure.

Following our empirical rule we multiply the coefficient
§f x3 by <the exponent 3, at the same time subtracting 1 from
the exponent, This gives us

5=1

¥yt = 31 x s OT y! = 3x2.

Expressed in a nore general form our rule then would be

D=1 S=1

") = nx

Now suppose that x3 had had a greater coeificient than 1,
a coerficient such as 2, for exanmple,

What would be the derivative of y = 2x°2

1‘1;-(21:3) =y!' =

Turn vo paze 43 to check your answer,
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ans., lwultiplied the independent variable, X,
vy its exponent, 2, and decreased the
exponent by one,

Yes, it's as simple as that: To "derive" the.deriva=

tive of the function y = x2

y We have merely to multiply
the x (actually, its coefficient, 1) by the exponent, 2,
and subtract 1 from the exponent,

Thus,

y'(xz) = 21 x2-1, or = 2x

Let's try this procedure with a slightly different
function such as y = x3f

What is the derivative of y in this case?

y' =

Check your answer orn page 41.
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ans, y' = 52x

We have discussed what happens to the independent vari-
able, x, when we find the derivative. But suppost there were
a constant in the expression. What would anppen to it?

For c¢xample, consider the function y = 2 + x3.

We now know that the derivative of x° is 3x2. But what
about the derivative of a constant, such as the 2 in this
example®?

The answer is that the derivative of a constant is zero,

hence the 2 would just drop out. Without delving into the
mathematical proof, the reagson for this is that since a der-
ivative represents a rate of change, and since a constant
doesn't change, it simply drops out as a meaningless compo-
nent of the derivative.

Ve express this symbolically as follows:

D=2

Edy(C) = 0

Find the derivative of y = 2x% + 7.

y' =

Turn to page 44 to check your answver,
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ans, y' = 4.2x*1 4 0, or y' = x>

What do you think would be the derivative of a func-
tion such as y = x2 + 2x + 172

Herc we have an expression in which x appears in the
first power as well as in a higher power. The procedure
is, however, the same one we have been using to find the
derivative of powers of x,

Here (from paze 41) is the rule again:
d .0y _ __n=1
TEx) =

With this rule in mind -- plus the rule regarding

the derivative of a constant =-- find the derivative of

2

the expression y = x° + 2x + 1.

y' =

Turn to paze 46 to check your answer,
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In working the problems on pages 40, 41 and 42 we have
been doing something of which you may not be aware, Although
it follows logically from our prior discussion about finding
the derivative of some power of x, it is time we examined
it separately and recognized it as a rule in differentiating.

The rule is this: When there is a constant as a

multiplier, the constant remains a multivlier in

the derivative,

Thus, 1f y = 4x°, then 3% = 4+3x° = 12x% = the derivative.

expressed symbolically this rule would appear as follows:

Do you realize you are solving problems in differential
calculus? Perhaps not big ones, but finding the derivatives
of functions of any kind is the heart of differential cal=-

culus,

Try this one Jjust to prove to yourself you can do it:

What is the derivative of y = 3x3 + 2x2 + 4x - 7?2

y' =

Turn to paze 47 to check your answer,
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This last problen also brought out another interesting
voint wiich I hope you inferred Ifrom your knowledge of
alzebra, This is the fact that the derivative of a variable
with respect to itself is unity (one).

Thus, if y = x, then y' = 1. Why?

Tollowving our rule for finding the derivative of a

power of x (in this case the first power), y'(x) = 1.x1'1.

Bat accordin;: to the rules governing exponents, x1'1 is the
1
"’ 1] L3 . 3
sanie thing as =T and since any quantity divided by itselfl
x
is unity, then it follows that x1 L 1.

Another, sraphical, way of looking at this situation is

that if y = x, then dy = dx, and the growvh rates are equal,

3 dy _ dx _
nence (—g:- = 4% = 1

So add this useful picce of information to your increas-
ing reperfoire of lknowledze about derivatives., TFormally

stated, therelfore, our fornula is

-

D~ 4
3 =(x), or &, =1,

Coatinue on paze 45,
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ans, Yy' = 30530~ 1y 202x° 14 1e4x -0

9x° + 4x + 4

Now, what have we in fact discovered through the use of
our empirically derived rules? This: e have found a simple,
shorveut way to determinin~ the derivative or instantaneous
rate of change of a function!

To make sure you have these rules firmly in mind let's
review them again briefly before going on.

itleaninr

2=1 mne derivative of x to the nth power is

cqual to n times x to the n-minus-1 power.
The derivative of a constant is zero.

The derivative of x (or of any variable)
wvith respect to itself is one (1).

The constant remains a multiplier in the
derivative,

To give yourself a little more confidence, try working
the following problems, using the rules above,

Differentiate (that is, find the derivatives of) the
following functions with respect to x:

= 2% « 4 + 2x°
1 4+ 3x + x9

2

4x° = 4

1

Turn to page 48 to check your answers.
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ans. 1. st 2, 9x2 Je 2X 4+ 1 4, 14x
50 2 + 10x4 e 3 + 9x8 7. 8x 8. 0

Did you get them all rizht? Actually, although we didn't
treat it as such, successive differentiation of the terms of
a polynomial (such as problems 3 through 7 on page 47) is
generally considered to be governed by a separate rule. This
rule simply says (in a common sense sort of way) that to
differentiate a function that is made up of several terms
connected by plus or minus signs, just differentiate one
term after another in succession.

Vritten out symbolically the rule looks like this:

du dv dwr
:'i}: 4 ‘CTJ-'C'-l- dx + e0e

D"'s 'Ed:?(u'l'v'l'w"'ooo):

u, v, and wrrepvesenting the various terms,

How let's sce if vou can male up a rule.

suppose we had a case in which the function was divided
by a consiant., How would you handle this?

See if you can differentiate the function shown below

and then devise a rule to cover such a situation.,

Rule:

Check your answer on page 50.
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There are many tricks to finding the derivatives of
various kinds of functions and we are going to examine only
a few of them., Just enough to get you started in the right
direction and to give you some notion of vhat it is all about,
The more difficult tricks -- and how to apply them to practical
problens == you will learn in your regular calculus course.

However, before getting biick to The Mystery of the
Thrown Ball, there is at least one more trick we should con-
sider. This is the matter of how to differentiate a function
havine a fractional cxponent,

Let us suppose, for examvle, we need to find the der-
ivative of the function y = Alx.

Do you recognize that x in this case has a fractional

exponent? Remember: ‘the square root of x can also be written

as x% » right? Therefore we can write the function as
1
y=3{'s.
That beinz the case, then y' = ?

(Follow your regular rule for finding the derivative

of some power of x.)

Turn to page 51 to check your answer,
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, the % is simply the

P
aas. Since %T is the same as %

constant coeiflcient of &2’ hence y' = 2(% )xz =1 or
v!' = x, Rule: To find the derivative of a function -
d1v1dcd by a constant, treat the constant as a
fractional multlpller.

2

Here is how we might write, symbolically, the rule
derived on the precedinz page:

d /3 1.4}
D-6 (8 = o'

Another exanple of this rule would be as follows:

2) 2 . 2 2

Or if y = , then y' = ?-3x = 2x°,

\)

e point is this: Treat the fraction as you would any

other constant coefficient of the variable.

Perhaps working ¢ few problems of this type will clarify
things further and give you more confidence. Here they are.

Find the derivatives of the following Ifunctions:

1. y=%3 yt =
2, y=%ci yt =
5 ¥ = Z%z y!' =
4. y=25§£ yt =
e .V=27‘i yt =

Turn to page 49 to check your answers,
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Lo
ans, y' = X7 = XY = e =

Did you remember your basic rule? Here it is again,

a bit more'simply stated: To differentiate a power (vhether

it is a fractional vpower or a whole number) multiply by the

bower and reduce the exponent by one,

You will see that we diad exactly this in arriving at
The answer shown on the previous page, And in case you may
have forgotten what you learned in algebra about exponents,
a negative exponent becores positive vhen the term is moved
from the numerator to the denominator of a fraction., This is
because muliiplying both numerator and denominator by the
equivalent positive power has the cifect of movin;: the
variable with the negative exponent to the opposite side of
the fraction bar and making it positive,

Try it for yourseli, but be sure you have shown each

L4)]

ct
()]
o]

(o]

Hy

the work before comparing your answer with that shovn

52,

o
=
ko]
o
3
[

Convert x™* to a positive exponent.

Turn vo page 52 to check your answer.
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ans, k” . “1 = xf = j; (Any nmunber to the zero
x*- X' X" power is 1, hence

x° = 1.)

Although there are a number of other derivative formulas
(most of which you will encounter in your regular calculus
course), we are only going %o concern ourselves with two more
of these == the derivative of a product and the derivative of
the quotient of two functions.

On page 48 we used the additional variables u, v and w
to represent other functions of x. We are going to use two
of these variables lcre, nately u and v, to simplify our ex-
planation of how to differcntiate a product. Because we have
been using fairly simple expressions -~ such as xz, 3y4, z&,
etc, == you may not sce the need of introducing two more variables.
But as you advance to workin:; with more complex expressions you
will come to appreciate the clarity that this little trick can
bring to a problem,

For example, we said above we were zoinz to talk about
how to fiand the derivative of the prodvect of two functions
of x, How suppose this product was (x2 + 3% + 4)(x3 +xXx=1),
e would then have to write

1%?(x2 + 5%+ 4)(x2 Fx = 1),

Sowever, if we let U = X° + 5x + 4 and v = %0 + % - 1,

then we can simplify the whole thin: and express the formula

Zfor the derivative of the r Juct of two functions as
-] e 2
& (. _ Lav | odu

2=1 G (uv) = ugp + v

see if you can put this formula into words.

Turn o page 54 to check your wording.
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ans. (x2 + 1) (1) + (x = 4) (2x) = 7%% = 8% + 1

having examined briefly the formula for the derivative
of the product of two functions and the way in which this formula
is used, let us take an equally brief look at the formula for
the derivative of the guotient of two functions,

This forrmla is as follows:

du dv
ax ‘v 2

Put into words we would say: The derivative of the quo-

tient of two functions is eanal to the denominator tines the

derivaiive of the numerator, minus the numerator tines the

terivative of the denominator, all divided by the denominator

squared,

As usual, the procedure can ve expressed more clearly in

synubols than in words. (Remember: If you find yourself wonder-
ing wny <he product and quotient derivative formulas are the way
they are, it would be zood practice tryinz to derive them your-
self using the delta method., JCheck your procedure with that
3iven in any zood calculus text in case you get lost along the
way. )

llow let's see how the quotient formula works by dilfer=-

2x2 4 3
X+ 1°

+ 3and v=x-1, we get

entviating the expression y =
2

P!

etting u = 2x

Ar _ L= 1)(4) - (222 + 33(4) - 4x% - 4x = 3
dx (x - 1)° (x - 1)°

T e - oo : $ ; =‘ ; ?
Wwhat would be the derivative of y S

Qurn to pase 55 to check your answver,
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ans. Tne derivative of the product of two functioag is
equal to the first times the derivative of the second,
plus the second times the derivative of the first,

Very well, let's try using this formula, To do so we
will find the derivative of the product of the two functions
X" 4 3X + 4 and x3 + X =1,

First, however, let us restate our formula so that it
will be readily available to refer to:

() =ugf + v

Let us also remind ourselves that, in this example,
2

u = X + 3x + 4
and v = x3 + X =1,
Since %% = 2X + 3
dv 2
and Ix = XX+ 1,
d
then —m=(uv) = (x° +3x+4)( +1) + (x74x=1)(2x+3)
dx , , : ,
au
E" v ax

Since multiplying these expressions and combining like
terms where possibdle to simplify is purely an algebraic exercise
and would add nothiﬁg to your understanding of the procedure,
we will not take the problem any further -- although you are
welcome to do so if you feel you need the practice, (Answer:

St - 12}.3 + 15k2 + 4x + 1.) At the moaent we are only interested
in demonstratinz the wrocedure, or use of the formula, fox
- ©inding the derivative of the product of two funciions.

However, here is a somewhat simpler provlem for you to
conplete by yourself,

Lox® s 1)(x - 4) =

Check your answer by turning to pagze 53,
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0 T o
ans, y' = (2:45) (5:7) = (2=5)(2) _ oA 9t 4 10
(2x+5)° (2x+3)°

On page 47 we sumnarized the rules for differentiation
which we had covered to that point., Now let us summarize the

additional rules we have worked with since then.

Rule Meaning
D=5 7%;(u+v+w+...)= To differentiate the sum of several terms
_ connected by plus or minus signs, differentiate
du, dv , dw each term in succession,

'a‘i'l"a‘i'l‘ﬁ + oo

D-6 —-(L) = L.2X  wnen aifferentiating a function divided by
a constant, treat the constant as a frac-
tional multiplier,

D=7 TEF(uV) = The derivative of the product of two functions
is equal to the first times the derivative of
A&,y the second, plus the second times the deriva-
dx dx tive of the first.
D=8 7%;(% = The derivative of the quotient of two func-
tions is equal to the denominator times the
du av derivative of the numerator, minus the num-
v(5) - u(ai) erator times the derivative of the denomin-
5 gtoz, all divided by the square of the denom-
v inator.

Turn the page now and we'll look a little further into

the nmeaninz and application of differentiation.




Now that you have had a little experience in differ-
entiating functions to find their iastantaneous rates of
change (and that is what we have been doing, in case you
have forgotten), let us see how the procedure works in the
case of the ball,rising and falling under the influence of
gravity.

Our equation for the height of the ball was, if you will
recall, h = 128t - 16t2. From what we have learned,
therefore, we can now differentiate this expression to find

of
the time rate of changeAheight. Thus,

3% or nt = 1.1288"1 - 2.9642"
or h' = 128 = %2%t,

(distance)
That is, the rate of change of height/with time is equal

to 128 -~ 32t. UHence for t = 2 seconds (the instant we origin-
ally selected for analysis), h', or v (for velocity), =
128 - 64, or 64 feet yer second, precisely the instantaneous
velocity value for t := 2 which we found by approximation on
pagelzo.

¥What would be the value of h'! for t = 4%

h! =

Turn To0 paze 58 Vo checik your ansver.
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Mathematical symbols are distressing only if you don't
understand them. The ones we will use in our general approach
to finding a derivative are all ones with which you are ace
quainted:

AXx = a little bit of x
by

a little bit of y
f(x) = any function of x

So this time instead of using the specifie function
y = x2, let us substitute for x2 the more general expression
f(x)., This gives us

y = £(x).

Now considering,as we did on page 24, a point Q on the
curve f£(x), a short distance away (4x horizontally and Ay
vertically) from the point P, its coordinates will be y +Ay
and x + Ax.,

Substituting these coordinates of the point Q for y and

x in our equation y = f(x) therefore gives us:

Zurn Yo pase 59 o check your answer.




ans, 128 = 32¢4 = 123 =« 128 = 0

Does that answer surprise you?
It won't if you will turn back to pnagze 13 and observe

Trom the graph that the ball was risins (its speed decreasine)

between t = O and t = 4, After + = 4 the ball was f2lline
(its speed increasins). At t = 4, therefore, the instantan-
eous velocity was zero; the ball was momentarily at rest,
neither risias nor fallinr.
In parges 28 to %3 we illuctrated, both algedbraically
and srarhically, what is ~enerally referred to az the delta (A)
approach to finding a derivative, TFor thiz purpose we used
the opeciflic function y = 32.
Jfow, in order to lccp at least a minimum of faith vith
the professional mathematicians -- and without, I think,
alarming you unduly -- we will do the same thing using a

raneral cace,
L - = ]

Turn to paze 57, pleasc, and we'll have a z0 at it.
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B
ans, 7 + Ay = £(x + 4Xx) mm‘vm

4

9
‘j"'dg -+ — e e — - =R (X:'I'A)‘)g'f'dﬂ)
Ay
4 |7 A l
3 X+AR ¥

Ynowing, then, that the value of the function v = f£(x)
at the point % is y + Ay = £(x + Ax), and recalling fron
the cenexral statement of the function that y = f(x), wescan

substitute this last value for y in the equation
v+ oy =T(2+ Ax)

civing us £(x) + oy = f(x + Ax)
from which Ay = £(x + £x) ~ £(x) (subtract-
ing £(x) from
both sides).
Dividing voth sides , of < « -
by Lx vie get Zy e 4‘,\2 = £(x)

Vnat does this last, boxed-in, expression represcnt?

}-

£ you can put it into words in the space provided below.

Turn to nare 60 to checl vour answer,
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e cencral cxprescsion for the clone of the secant
line 5, or the average rate of chance (zrowth rate)
of the function w1th respect to b 4

b flx +4%) - f(x)
b 5x
2

for the secgnt S with that for the function Y = x- found on

Compare this expression,

page 29, The expression -i = 2X + X on page %1 represented
the averagze rate of change in the svecific function y = x2

f(x +ax) = £(x)
<X

‘represents the average change of any function (represented by

over the interval 4x. On the other hand ﬁ-;% =

y = £(x)) over the interval £x,

To find the general expression for the derivative, then,

we again imazine Q to approach nearer and nearer the point P,

That is, we allow 4% to anproach zero as a limit, This zives us
£ - P Sv
1im AY = (x B £(x) _ dy :]
2w s, oO% Ax dx
Tnis, then, i= the general exvression for the derivative

ol a funetion, or the instantaneous rate of chanre of y with

respect to x (or vhatever "name" we give to the variables =-

h and ¥, x and y, u and v, etc,).




-()]=

CUADTHR 5: DIPPERENTIAT, C "QULUS PUT T0 WORK

No doubt you are beginning to wonder if all this is
leading to something useful.

As vointed out earlier there are many, many practical
applications for differential calculus, a great number of which
you will be exposed to in your regular calculus course. Since
this book was designed simply to initiate you into some of the
fundamental concepts at a slower pace than usually is possible
in a standard academic course, we will not attempt to explore
any more types of standard derivatives, Nor will we get in-
volved, to any real extent, with applications., However, it
would not be fair to leave you without having had the fun of
aprlyingz some of the fundamental things you have learned.

Tnerefore we will look at some examples together. First,
however, a word of cautién.

Ve have used the variables x and y most frequently be-
cause that are considered general variables (that is, taey
represent any variables) and because they also represent the
familiar coordinates of the Cartesian coordinate system. But
don't.ﬂet the idea that they are the only two variables used
in calculus! We have already had an example of two other,
specific, variables in the vroblem of the thrown ball.

Vhat were these two variables?

Turn 1o paze 62 to checlt your answer,
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lixanvle 1

Suppose we wished to know the rate of variation of the
volune of a cylinder with respect to its radius when the ra-
dius is 5 inches and the height of the cylinder is 20 inches.,
In other words, how much will the volume (in cubic inches, of
course) chanse for a chénge of one inch in the radius of the

cylinder under the particular conditions where r = 5 inches

and h = 20 inches? <::::E§EEE>
This situation is shown in the sketch

at the rigshe,

We must otart with the formula for the \\\~____—’/)

volume of a ecylinder, namecly, V =7rr2h.

And since our problem is to find the rate of change of V with

respect to r, we take the derivative of V with respect to r,

namely, 5
V=arh

V= 2% rh (h, of course, is a constant
in this problen)

Suostituting the given values r = 5 and » = 20 we get
V! = 247M«5°20 = 628 cubic inches/inch change of
radius,
What this means is that at the particular point where
r = 5 inches the volume of the cylinder is changing at the
rate of 628 cubic inches for a change of one inch in the radius.
Althoush you may feel that this is not the kind of prob-
lem you are apt to encounter in your kitchen or workshop, it

is a simole example of a very common 1ype of problem found in

engineerirg, How might it ve of use, for example, in designing

containers?

o 1~ - . -
. 0 chegl: your auswez,
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ans, D' = 2% 4 6% = 20 4 600 = 620 fect/scoond

Lxamnmle 3

Acceleration is defined as the rate of change of velocity
with respect to time, If the velocity (in feet per second) of
a certain airplane in a dive is v = 300 + 4t2, where t is the
number of seconds since the dive began, what is the formula

for the acceleration and what is the acceleration value forxr

t = 10?

Since acceleration is the rate of change of velocity
with time, if we take the derivative of the velocity formula
civen above it should yield the formula for acceleration,

. Right? Let's try it..
, v = 300 + 4t2

Taking the derivative
of v with respect to t, v'!' = 8t = formula for acceleration,

But since v' represents acceleration, we can write it as
a = 8%,
Therefore, for t = 10, a = 80 feet/second®.
Question: What would be the acceleration formula if
the velocity was v = 50t + ts, and what would be the

acceleration value when t = 4 seconds?

Zurn to »nade 35 to check vour answex,
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ans, For a certain heirht of can (eircular) container
one could estimate added volume for increased radius.

Your answer may differ somewhat from that given, but the
inportant thing is to understand what the derivative of a func=
tion such as this means and how it can be used in a practical
way.

Example 2

An object moving in & straight line is t + t3 feet from
its starting point gfter t seconds., What is its velocity after
10 seconds?

If the object is t + t° feet from its starting point
after 10 seconds, then t + t3 must represent the distance it
has travelled, We can write this as

D=t + t
and we have our function, or relationship, between distance
and time, And since velocity is simply the rate of change of
distance with time, if we take the derivative of D with respect
to t we should have an exvression for velocity. Thus,
D=1t + t3
and D'=1+3t2.
Substituting the value 10 (seconds) for t gives us
D' = 301 feet/second, the instantaneous
.velocity of the object at t = 10,
Question: What would the velocity be after 10 seconds

if the object were moving at the rate D = 1 + t2 + 2t3?

Turn to »nage 63 to crheck your answer,
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l) [
ans, a = 50 + 3t°; for t = 4, a = 50 + 48 = 98 feet/sec?

Txamnle 4

A certain firm makes a profit of $P each month when it
produces x tons of a certain commodity, where P = 1500 + 15:c2 - x3.
Wnat is the most advantageous monthly output for the company?

Obviously the most advantageous output will be the one
that vroduces the greatest profit in dollars. The question
is, then, what production tonnage (i) will yield the most
dollars? This means we are seeking the maximum rate of change
P with respect to x.

Let's start out by solving this praphically, plotting the
graph of ? as a function of x and findinz out where the maxie
mun (high) voint of the curve is. To do this we will use tre
values x = 0, 5, 10, and 15 and sketch in the rest

of the curve without tabulating wvalues.,
d21e0 =

ip X
20c0 =TT
(5o |0
[ty <
L 150 |5
I dco S
Reen |10 .
(706 =
’ l IToo |IS
[é e -
f:éC“% : f b— X
o S lo e

The tonnage that yields a maximum-profit is, x =

for whnich P = .

The rate of change of P with respect to x is (from the

formulz at the top of the papge), P!

mat would you expect the value of P'to be at the point

x = 10%

Turn'to nage 65 to checl your answers
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P'=
ang, X = 10, P = $2,OOO;ABOx - 3x2; Zero,

The first answer simply represents the coordinates of
the hish point of the curve; the table of values,.of course,
gives the same information.

The second answer represents the derivative of P with
respect to x in the given formula, that is, the instantaneous
rate of change of profit dollars with respect to tons produced.

If you got the answer to the third question correct you
did very well indeed, for this involved a little thinking about
what the derivative means graphically. Do you recall we said
carlier that it represents the tanzent to the curve at a point,
or the slove of the curve? It isn't hard to visualize the slope
of a curve that is headed either up or down. But what does
the slope loox like when the curve is going neither up or down?
This is the situation we find at the high point of the curve.

If you got the correct answer you realized that the slope
woulé be zero at the maximum point (or at a minimum voint,
thouzh we won't go into that here), because the tanéent would
be parallel to the x=axis.

If all this is so, then substituting the value 10 for x
in the derivative of P, namely P! = 30x = 3x2, should produce
a value of zero for P!, Try it.:

'or x = 10, P' =

Turn to page 68 to check your answer,
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ans, ‘I'rizsonometric, Inverse-Trisonometric, Exponential
A ’ (&} H ’
Lomarithmic

Don't become alarmed., We are not going to become in=
volved in all the possibilities that exist for differentiating
the various types of transcendental functions., We are really
only going to look at two: the derivative of a trigonometric
function and of a logarithmic function.,

However, since it won't help you to know how to differ-
entiate such functions unless you first can recognize then,
look at the functions below and see if you con identify them

as either algebraic, trisonometric or exponential,

1. ¥ = sin(x2 - 3)

20 y = ex
3. y=2x> -3
4, y = 2cosx sinx

m
-~

urn +o raze 69 to check your answer,
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Since the possibilities for application are nearly limit-
less we will not include any further examples., You will find
all of these you want in any first-year book on calculus. Re=-
memver: our yurpose here is not to supnlant such a text, merely

to suonlement it by introdueing you to the basic concepts at a

leisurely vace,

Before leaving this dbrief excursion intc differential
calculus, however, there is another class of functions with
whieh you snould at least ve familiar, These are knovmn as
"transcendental™ functions. And in case you dont't recognize

this term from your study of alpebra, a transcendental. function

is one which is non-algebraic, although it is an important
branch of the family of mathematics., Below is a chart that
should help to refresh your memory regarding the various

branches of the family of functions and equations,

r Polynomial
Algebraic
l Non=-Polynomial
Yathematical I-Trigonometric
| l-Inverse-ﬂ?rigonomtric
Transcendental
- Exponential
—Logarithmic

Write below the names of the four kinds of transcendental

functions showvn in the chart above,

1. 2 3 4,

Turn 0 nate 67 to check your answver,
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ans, 1. trironometric 3. alberraic
2., exponential 4., trigonometric BEST COPY AVAILABLE

Exanple 2 is an exnonential function; example 3 is an

olcebroic (power) function. Be careful that you don't confuse

them, An exvonential function (which is a kind of transcendental

function) consists of a constant (or variabdle) with a variable

exponent, A power function (which is a kind of algebraic function)

consists of a variable with a constant exnonent,

I'm sure you had no difficulty recosnizing examples 1
and 4 as trigonometric functions, and this is the type of function
we will exanmine first,

The derivative of any of the triconometric functions can
be arrived at by means of the delta process, however we are not
soing to make you wade'through this, Ve are only roing to con-

sider the sine function and will simply state that

D=9 d

154

(sin v) = cos v%; ,

witere v is simply some function of x.

Apoplying this rule to example 1 from page 70 we get

y = sin(x2 - 3), hence v = x° = 5 and %% = 2%
therefore y! = 2x cos (x2 - 3),

Use this approach to find the derivative of the following
Tunction:

y = sin(x’ - 4x); ¥ =

Turn to v»age 70 to check your answer.
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ans, y!' = ( - Q)cou(v’ - 4x)

BEST COPY AVAILABLE
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Your textbook (or any table of standard derivatives)
will give you the formulas for finding the derivatives of
the otaer trijonometric functions. To use them you just
apply thexr in the same way we did on the previous pare for the
sine function, However, let us turn our attention now to the

rovlenm of findins the derivative of a lorarithmic function.
This is interesting because it introduces the concept of the
so-called "natural" logarithmic base e,

In algebra we are used to working with the lorarithmie
oasc 10, the base used for "common" or Brigssian lors, Let
us consider, however, what the derivative misht be of the
function y = lobbz if we treat it temporarily as an algebraic

expression and don't worry about what the base b represents.

Using the delta method we arrive at the expression

"I y I_‘
]
v

LY = Leon(q 44
FE = cloc.,(1-{ :-:)

This looks a bit messy, but as we allow/x to approach O,

L
O
X

t
o
(1]
D

appears to approacnh

. . e
voonantial funetion (1-+4§r
the value 2,718... as a limit, hence the derivative becomes
Qv
== 10902.718...
Zlow comes the trick., If we allow b =e = 2,718..., then
the derivative simplifies very beautifully to

d %) = L
dx(loge“) X

Continue on pare 71.
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Tnus we arrive at the base e = 2,718,.. for what is

termed the "natural" logarithmic base, or the base of natural

logs, The only thing natural about it is, of course, that it

is "naturally convenient" in order to make the standard, step-
by=stvev nrocess of differentiation work out Simply for a log=-

arithmic function,

Logarithms taken to the base e also are known as Naperian
loss, arfter the man who first calculated the tables for them,
Because of their convenience, Naperian or natural logs are used
almost exclusively in calculus and advanced mathematics.,

Finally, then, the formula for the derivative of a log=

arithmic function (v) of x is

- d (1. = 1dv

Let us take as an exahpl%of the use of this formula the
function y = log(x2 - 2). (Ve will not continue to write in
the base e but henceforth will consider it understood.)

Since v in tais case is (x2 - 2), our formula tells us
to take the derivative of this expression with respect to x

and to vlace this over the function itself, Therefore,
y! o= 2%
xz -2
Jow suppose you try differentiating the function

y = log(x2 + 3% - 2),

Dura to paze 72 to check your answer,
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ans, y!' = 5
o4+ 3x - 2

So now we have arrived at the derivative formulas for two
transcendental functions == one trigonometric and one log-

arithmnic =-- and the last two we will investigate. They ar::

Rule ' Meaning
D=9 é% (sinv) = COS'V%% The derivative of the sine of v (some
function of x) egquals the cosine of the
function times the derivative of the func-
tion with respect to x,
D-10  f=(loggy) = w3 The derivative of the losarithm (to the

base e) of some function of x is equal
v0 the derivative of the function with
resnect to X times 1 over the function
itself,

Although there are many other standard derivative form=-
ulas or rules, they can all be arrived at by the same general
delta process we have used thus far,

In brief, the anvroach we have followed in the foregoing
vages is all there is to differential calculus, Everything
else is just a systemmatic appiication of the same basic idea
to different types of functions for different special pur-
poses, Once we have used the delta progess to find the general
rules, we then use these general rules (formulas) to solve
provlems because they make ?he solution faster and simnler,

With this in mind turn to the next page where you will
find 2 gquick review oﬂeverything we have covered on the subject

of differential calculus, after which we will proceed to explore

the companion subject of integral calculus,




Review of dirierential calculus conceptis,
J
Review Itenm lage Example
— reL.

1. In mathematics when we speak 8 Vnen one is runnins out
of "approaching a limit" the of rags, the amount re-
limit referred to usually is maining in the tank is
zZero, aporoachins zero as a

limit.

2., The no%ion of approaching zerol 10 If Gr represents the
as o limit 1 d . .

é boiigailcan oe represente gas remaining (in the
ym e example above) then we
can write this as
G,—/>0
r

3. A najor »roblem that led %o 11 A free~falling body,
tne develooment of calculus such as an object throwm
was *hat of how to determine into the air or drooped
the instantaneous, rather than from a heizhv, is an ex-
the avera~e, velocity of an ample of one whose velo-
ovject wnose speed varies city varies with time.
with tinme,

4., e sveed, at any given ine 14, | (see pages 14 and 16)

[ S N o s 3

stent, or a free-~falling body | 16
can be estimated quite close- ~
ly oy calculating its averace
snpeed over snorter and snort-

er intervals,

5. Az an aid to understanding 21 Relationships such as:
the relationship between two 2
variahles (such as heisght or h =128t - 167, or
distance with time, x and y, _ x2
ete.) it is often helpful %o y =
drayws & Zraph of that relation-
chin,

6. The shane of the resulting 24
curve revresents the rate at
vwrnican either variable is
cranzing value with respect to
the other variable. : : .

) i .. . N

7. Zhe zlone of a curve at any 24 |y LT e ek
IR s g o W eng e
ziver voint (which we measure / S .

oy means of a line tantvent to
tre curve at that voint) rep-
resants the direction of the

curve,

] (o
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rame
ref,

-4

xample

c
)

To aacist in analyzine the
relationsniv between the two
variableg in a function such
as y = x%, we graph the funce
tion,
and another voint, Q, on the
curve o

select a fixed point, 2,

short distance from P.

25

(g

Q
p

9. 4 straiznt line vassing

nroush the two noints is
called the "secant" (S), and
the risht triannle formed
tThereunder has as its sides
the two coordinate distances
(A% 218 AY) between the
noints,

25

10.

The slope of the secant, S,
is then Ay over Ax.

26

1.

‘n oxder to observe how the
reiationshiv hetween x and y
varies along the curve, we
iza~ine the v»oint Q@ to srad-
vally @oproach the point P,
and hence the =secant S to
~rzqually anvroach the tan-
zent line 7,

31

\
L\ B

/"
P - -
\°$ rd T

; X

.
'/ -

-,
v

12,

1 H
(=

| O}

ind & mathematical exe
sion for the slone of

e secant line as O
asproacres ?, we substitute
the coordinates Af Q

(x + A% and v + Av) in %he
ecuntion of the cuwrve,
ramely, v = x“, This rives
us the expression

s,

ct'd +3
‘N o
.

er
e

e

PaN's

stew o2
e
\

A5 2x +Ax for the

slovne of S,

30,
31

Coordinates of

0= (x +4A%) and (y +A4y).
Substitvtine these

values for x and y in

the equation y = x2

gives us:

vy +AY = x2 + 2X°AX + &X

or, suostituting x2
v and dividing both

2

for

sides by x,
QY = 2% +4Ax

A%
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Roviey Ttenm

Pare
ref,

Example

15.

rets
that is,
a limit.

As Q avproaches P, Ax
shorter and sh orter,
1t anovroaches zero as

31

14,

[l
.

Lot

~oen Q arrives at the

point
P, AX does become zéro, thus

dropping out of the expres-
\ 5 \
2X + Ax, and the

secant line becomes {coin-
cides with; the tangent to
the curve at P,

.o NA
S1GN &= =2
AS

53

15.

Wnat occurs in item 14 above
can pe exvressed symbolic-
Ally as shown in the example
oovosite; verbally we say
that "the limit of

v
4, Ax a1

wemy a8 vroaches zZero
limit, is 2x."

Ax?

an a

Wi
W

e name ~iver to the limit-
. - - v

ing value oI %3 as
annroacnes zero is "deriva-
tive," and it is written as
d s
b
ax
& limitin~ value,

Ax

A derivative, then, is

X ¥

58

-

dy . .
wedee o= [
Tr aerivative

ay ;
i [eans the deriva-

tive of y with resvpect
to X,

17.

Me derivative of y with

snect to x in the
2

-
s
h§

re=-

exnression

P ==

is 2x,

18.

“rere are four conmon ways of
exnressine the derivative of
v with respect to x,

19.

Looxking at item 17, it is
anoarrent that we could nave
ilound the derivative of

S
’) == o
.

simnly by multinlyine

A

tne ricntenan. rembver of the
ecuation oy the exwonent, 2,
and {hen reducing the orig-
inal expouncat by one to et
th e new exponent,

2w

NN
e

nu




v

Review TLom rof lsxample
20, Whe peneral rule for Iinding | 44
the derivative of some power
ol X is:
. n-1
~(x") = d ;.4 3
We read this as: The derivae &x(x ) = 4x
tive of x to she nth nower
is equal to n times x to the
n-minus-1 vower,
21, The derivative of a constant | 43

is 7e”o. Thus, _g_(8> = 0

dx -
a(e) = 0

22, Tre derivative of x (or of 46

any variable) with resvect d (x) = 1

o itself is one (1). ax
25, The term "differewnt’ :e" 47 To differentiate the funce

means "find the deiy utive tion y = x5 means to

~ N - ..l_:lf'. u..)

ol. find the derivative of y
with respect to x in
the function y = xs.

24, Mo differentiate a function |48 If y= 2x* 4 3x° - 4x,

comnosed of several terms ; p .

connecied ov plus or minus then y'= 8x” + 6x 4.

sirns, simnly dlfferentla

one term at a tine,

Sy:bolically expressed:

ol
1y =
T+ v+sw L)
dx ' odx dx *°*
25, To find the dervivative of a | 50 Is _ 2%
function divided by a con- + y ==
stenv, treat the constant as 5 9
a fraclional multiplier. then vy = 7X
ay( ) dx and y!' = %x or %?
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. . rasme
levie o “ 5 ple
“"“Puv1ow Item rof, lixampl
26, o difrferenticte a fraction~ | 51 o
. o J- y = X
al vower, multiply by the o
fraction and reduce the ex- y' o= Sy ¥
vonent by one (just as you
would with any exponent),
27. The derivative of the pro- 52 3 5 3
duet of two unctions is TEF(X ) (x”)
eoual to the first times the 2 2 3
derivative of the second, = x“(3x°) + x”?(2x)
plus the second times the _ 3x4 + oxt
derivative or the first., Thus) i
X 5 = 5Xx
d av du
dx(uv) = Uix * Vax |
28, The derivative of the uno- 3
3 ~ . 0] s D
tient of two Tunections ic 5
coval to the denominator d (x ) =
times the derivative of the X ;? =
numerator, minus the numera- . 4 5
tor tires the derivative of x“(5x7) - x”(2x)
the denominator, all divided x4
by the denominator» squared. 6 6
! - 5% - 2x
. du av - 4
7Y - " gy ooy
2 53X 2
pd
29, Maxinm the derivative of 56 5
reight (h) with respeect to h = 128t = 16%
vime (1) in the equation . +
civing {the chanse in height ht =128 - 32%
(with %ime) of the ball throwy When t = 2, then ht,
into tre air, yields the or v, = 64 ft/sec,
formula for vhe int .antan- (note that Li uctually
gous velocity of the pall at is v, the velocity or
any ~iven instant. time rate of chance of
the position of the vall)
20, e ~enera) exnrcssion For 57 A
I e heyiturhy gy a s Suaiadt ’ - \ : lim @«
the derivative 13 obtained 59,1 If y = £(x), then g QX
in the sanme general wey that | 60 - o
we fouand the derivative of = £(x +'Af) 1ix) = 4%
. : : 2 Lx X
the goacivic funetion v = x°,
31. Tronscendental functions are | 68 Trigonometric, expo-

ron=algeoraic functions.

nential and logarithmic
functions,




Lare
ref,

Review Item Fxamnle

52, The derivative of the sine 69
or v (gome function of x) y = sinx
equals the cosine of the ‘
funetion times the deriva-
tive of the function with
respect to x., Thus,

2

y! = 2xcos x2

NN av
—e—( SN = C0O03 Vewm-=
dx v ) vdx

e
.

Ll
.

in caleulus and advanced 71
mathematics the so-=-called
"matural base," e, (equal (See page 70 )
to 2.718...) is used as the '
haca for lorarithnms,

1
~
*

tne derivative of the los- 71 =
arithim (to the base e) of y = log (x° + 3)
some function of x is equal
te the derivative of the y!' = -
function with reswmect to xj + 3
i, multivlied by 1 over
(that is, the recivnrocal
of) the function itself.
Thus,

dv

& 1
T (tozey) = 5

”

And now since you probably would like to discover how
mich you have learned, turn to page 79 and take the short

self=quiz you will iind there,
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Selr-tuic on the bagic coneents of Differential Calculus

(Cirele the correct answer or Till in the missing information)

1. Differentiate the expression y = 3x4. ans.

2. 1'ind the derivative of s with respect to

. . 3
r in the cquation s = 8r-, ans,

5., Whe symbol A is used in ecalculus to mean

4, Pre derivative (rate of chanse) of distance
with resvect to time is called velocity, True False
5. A long-standing mataematical vroblem whose

solution led to the invention of differen-~
averazse

tial calculus was that of finding a way to instantaneous

detvermine the velocity of an

object,

The derivative of a constant is .
A dy 3 o s -
T A% and i Tean the same thing, True False

. The symool — means .

9. PFind the derivative of y with respect to x
3.

i

in the exnression v = 5x7, ans,

L .
10, In the firure at the risht what is the 4 /L

line vassing through the two points i -
{

\

}'{,

of the curve called? ans, =

‘ — %

11, Differentiate the expression y = x’+2x2-4x+1.ans.

12, Yhe derivawive of any variable with respect




Self-Quiz (continued)
15, The slope of a curve at a point is measured

by the ansle between the to the

curve at that point and the x-axis,

14, FPind the derivative of y with respect to x
in the exvression y = x? using the delta (A)
nethod, Show all steps,

15. The formula for the area of a circle is
(as you nrovably recall) A =1rr2.

Find the expression for the rate at which

the area is changing with respect to the

radius, and evaluate this expression for ans, (1)
r = 2 feet, ans,(2)
* J (3 ~ dv ] -~

16, Write the exvression for o in terms of

Ay and Ax. ans,

17. An automobile moving in a straight line is

a distance of 2t «+ 3t2

from its starting
voint after 1 seconds., What is its
velocity afier 12 seconds, (Remenmber:
The derivative of distance with respect

%o time is velocity.) ans,

18. If the velocity of an object is given by
the formula v = 200 -+ 5t2, wrat would be

1ts acceleration value for t = 87 (The

velocity is in feet per second. Remenber
that acceleration is the time rate of

chanze of velocity.) ' ans.




BSeli=ouiy (continucd)

19,

22,

kvaluate the slope of the curve defined by
the exnression y = x2 - 4x for the value

x = 2. ans.

—ille

In the vrevious probvlem what does the value

f the slope tell us about the curve at the

voinv x = 29 ans,

Find the derivative of y with respect to x
in the following expression: y = (2x+1)(x2-2). y!
(Use the product formula from page 52, )

Usins the quotient formula from vase 54
5o . . x2 + 1
differentiate the expression y = S5 ans,

x° -1

The expression ¥y = tan(x® + 3) is a tran-
scendental function. True
Vhat is the derivative of the expression

y = sin(x’ + 1)° ans,

False

Find y'" if y = log(x3+-1). ans, y! =

Turn to pase 82 to check your answers,




15.

Answers to Self=0uiz on Differential Calculus

12x%°

-

2
s!' = 24r~
a little bit of, or an increment of; thus, Ax means 25

a little bit of x.

True 56, 64
instantaneous 2
zZero 43

b
False, '%é renresents the average rate of growth of 38

a function, or average rate of change, %% is the
limitin~ value of the ratio %;% as the interval Ax

of the independent variable aporoaches the limit zero,

v o, o
Therefore, %; is the finstantaneous rate of chanze

of a function at the point in question,

approachﬁs 7
s ‘

y! = S 52

the secant 23

y' =30+ 4x - 4 47,48

one (1) 46

tangent 24

(see paze 38) 37,38

A' = 2qrr; vhen r = 2, A" = 411, or the instantaneous 62
rate of change of the area of a circle when r = 2 feet
is approximately 12.56 square feet per unit change in

vhe radius,
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Answers to Self-Quiz (continued)

Pare ref,

. 1_\_,*\_7__(3.
16. in?O i E% 38

17. d = 2t + 3t°

dl'= v = 2 + 6%
when t = 12 seconds, v = 2 + 6(12) = 74 ft/sec

64

18. v = 200 + 5% 63
vi= a = 10t
when t = 8 ft/sec, a = 80 ft/sec/sec

19, y = x* - 4x ' 66

y'= slope = 2x - 4

vhen x = 2, y' =0

20, Since the slope of the curve = 0, the tangent to 66
the curve at the point x = 2 is varallel to the
x=axis, meaning that this is either a maximum or
a minimum voint on the curve and that the curve
is changine direction,
21, v = (2x + 1)(x2 - 2) | 54
yi= (2x + 1)2x + (x% = 2)2

= 4x2 + 2% + 2x2 - 4
2

- 1)2% = (x2 + 1)2x
(2% = 1)7

=42

2

(x* - 1)
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Answers to Self=Quiz (continued)
Pare ref,
23, True 68
24, TFron the formula on vage 72, 69
y = sin(:c3 + 1)
3 dv 2

since v = x? 1, then 7= = 3x

and y! = 3xgcos(x3 + 1)
25, Azain from vage 72, using the log formula for the 71
derivavive,
vy = log,(x’j + 1)

since v ° +1 and %% = 3x2, then

X
2

3 3‘\‘
> + 1

y' =
X

if you ot 20 or more right you did very well indeed.
I you missed more than five you would do well to review

the items you migssed,

Zow i%'s time for us to consider the subject of intor~ral

caleulus, the counterpart of differentail caleulus, So olease

turn to nare 85 and we'll yproceed,




CHAPRRR 6: A TOOX AT INTEGRAL CALCULUS

In arithmetic and alaebra we have several operations that
are the inverse of one another, That is, one operation undoes
the other.

For examvle, subtraction is the iaverse of addition because
it undoes addition, Division is the inverse of multiplication
because it undoes multiplication, Similarly, taking the square
root of a number is the inverse of squaring the number (except,

of course, that in taking square root we wind up with two

answers since the original number could have been either
positive or nesative),

The relationship between differential calculus and integral
calculus is quite similat¥, for integral calculus is, in effect,
the inverse of differential calculus., For eample, the process
of differentiating the expression y = x3 consists of finding
the derivative of y with respect to x., From what we have
learned in the preceding chavoters we know that this would

B
ve v' = %x°,
Stvopnose, however, we were siven the expression y!' = 3x2

and asked to verform the process of intesration (net in its

social sense, olease) on it., This would mean Jindins the

ori~inai expression from which y! = 3x2 wvas cerived, VWhat

would we have to do to 3x2 to turn it inso xj?

. ey .z p LIPS -
2urn vo pase Lo to cieci your ancwer.
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ans, Divide by 3 and increase the exponent by one.

Lett's apply this procedure and see if it works.
2

y' = 3x
Dividing thais cxpression by 3 and increasing the ex-

ponent by one gives us 241

y = <55— = x’, our original expression,

Scens to wori, aoesn't it? This is integration.

aow there is a rather odd-looxing synbol, Xxnown as

an inftegral siwn, that is used to indicate this »process of

intesration and it is this:'(‘. Sasically it is sinply an
clonjated S, Thus if we wished to indicate that the process
of integration was reguired we would place this sizn in froat
of the expression. Apply it to the problem above we would
cets ¥ =‘Jﬂ3x2 = xs.

Lowever, there is still one thing lacking, namely, some
indication as to the variabvle with resyect to which the inte-
sration is Yo be performed. In the above example since we
wicin the integration to be performed with respect to the
variadle x, we indicate this by adding 4i after the term 3x2
(wiaich, by the way, is called_the interand). This gives us

r'd
2 -2;3ﬂ9 — NPJ
J:\ \ade = 4 o

In jeneral terms then: To inteirate a simple exponential

Tunetion such as tic one we nave used here, increase ing -

~oneant by oae and divide the exwnression bv the newr exvonceat.

Try tals on the followin:; problens:

L o 2
1e fS}:‘dx = 5 f6:c dx =
2. f 4x?3x = Lo Jr:‘:d:c =

fura to pase 87 vo check your answers,



frou page &6 -87=

BEST COPY AVAILABLE

ans. 1. x° 2. x° 3. 2% 4. Lx

For simplicity's sake we have so far omitted something

is
that actually/ouite imvortant. I wonder if you know what it

is? Here's a hint.

Sometimes in "going backwards" by inverse operation to
find an orizinal exvression we run into in inherent uncertaine=
ty. TFor instance, in taking the square root of a number we
can't be sure whecther the original term was positive or neg=-
ative, Thus,‘the square root of 4 could be either +2 or =2.
tiow then do we know which is correct? The answer is, we don't.
We simnly have two possible answers, both of which may be
correct,

Rearing this in mind and the fact that in the process of
differentiation constants dron out, what do you think is wrong

with accepting x’ as the comnlete answer to'J;xzdx?

furn to naze S 1o checit your aaswer,
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ans, Tiiere nay have been a constant in the original
expression which does not appear in our answver,

O course. If we start out to perform the process of
intesration on an expression which already is a derivative ==
and thics is the only kind of expression we can integsrate ==
Tthen we have no way of lmowingz what or how many constant
terns there may have been in the original, We indicate this
usually by adding the letter C to indicate what is knowm as a
"constant of intesration," The C simply represents any con-
stant terms that way have been in the oririnal expression.

Thus, properly staved, #{5 zdy =2 3 + C,

You will Iind, when you get further into your school
course (or any ;00d textbool on calculus), that when using inte-
zral calculus to solve apylied problems in bnysics, chemistry
and engineering there often are clues (in the nature of the
sroblems themselves) as to the nature of these constanis.

Thus we ofven are able +o0 evaluate themn.,

Lo nelp you become Tamiliar with some of the symbology

~

our textvoox may use, we will use I(x) for the tine veing ine

n

vead of y' to represent the derivative, Usinz these symbols
we can then state the following general rule:

1= -S5(x) = £(x), thex f:( Yax = F(x) + G,
) = 3%° ,, then _fix dx = x° + C,

Ll
~

Miayye 47
LIAUS 11 ox
i . ¢/

Try this below for the function P(x) = x-.

If = , bien .

|

Lurn Vo page 90 o checlt your answers,
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To test this theory let's start with such an integrand,
take its derivavive, and see if we do in fact end up with the
expression x". Thus,

a ,xn ) = n41 . nd =1 n

v W =x o

ax ‘n+ N+

We will not attempt -- nor need you attempt =~ to perform
this kind of reasoning about the other integration formulas.
We went throuzh the exercise above in order to give you some
notion of the lkind of reasoning that someone else had to go
throuv~h in deriving the various intesration formulas with
wihich we worx in integral calculus., If nothing else it should
~ive you a healthy respect for their efforts. ﬁowever, it also
snould provide you with some insigsnt into the.basic method of
integrating functions, And it is something your classroom ine
svructor will probably insist {that you know.

From wnat we have cov red above, we can now state the

required integration formula:

| n.. _ _1__n+1
I~1 1J; dx = TrTX + C.

With this formula in.front of you, nerform the integra-

tions called for below, for the values of x™. shown:

1. Then x% = 5x2, f&ndx

= n-=2

2, en x" = 7x6, fxndx = n=2=5,

3, Unen x7 = 2x ’ fxndx = n =1

4, ‘lnen the integrand = 1, Idx = n=20
Tura ©o pagse 91 to check your answers,

ER TS
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Crone nieee

a ¢ ] 4 o X i
ans. 17 ===(x") = 4x”? , then 4x’ax = %t +cC .

B
Laan

Most intesration, like most differentiation, is done by
formula. Since "working backward" an we have to do in inte-
cration is considerably more difficult, generally speakinz,
than perrorming the original differentiation, there are many
more poésible outcores of the integration process hence many
more tables of intesrals, or integration formulas, than there are
tables of derivatives. In fact, integral tables usually are
published as a separate book in themselves. But to use such
tadles one needs {to know how the formulas were arrived at.

linTortunately, there is no uniform, step-by-step process
of intesration such as there is in differentiation. In general,

intesration is a vrocess which has to be performed literally bv

tnhinkins baeclvards!

For example, to find the formula for j;ndx we first ask

ourselves: What is the function which, when differentiated,

n

yields x as its derivative? Recalling from differential

ny = nxn'1, it is anparent that a formula

4
calculus that =—s==(x
. ax
somewrat like the one we are looking for would be
kan'1dx =x" + C,

Althoush obviously not the answer to our question, this
equction gives us a clue that if we had started with a power
of x one desree nigher, and if we had divided that vower of

X by its exvonant, we would have had the desired intesrand,

Sontiaue on naze &9.




Did you get that last problem correct? It was intended

challenge your thinkine a bit and to lead you toward what is
reclly a special case of the general rule for inteprating
nowers of x which we develoned on the nrevious page, Namely:

he inte~ral of 1 (written as dx with the 1 understocd)

is ¥ vlus a constant, s,

I-2 jhx = X + 0O,

And, as you might exnect, the intesral of O is a constant,

n
Thus,

1=% fO dx = C

So far then we have three intesration formulas:

I-1 The integral of a power of x: ‘rxndx = -ﬁ-}:]-xnﬂ + C
I-2 The integral of 1: ‘ _fdx = x+ C
I-3 The intesral of O3 fo ix = C

On page 89 you practised using Rule I-1, However, since
there are no variations ¢f the situations covered by Rules I-2
and I-3 (i.e., either you have a 1 or a zero or you don't),
there really is nothing to practice. Just watch out for
these situations; be alert to recognize them and vo apply

the proper rules.

ITow proceed to the next' paze and we will consider the
sivuation wkhere we need o0 find the integral of a constant

times 2 variable,

ontviaue on pare 92,
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"he intecral of a constant, e, times a variable, v,

is the same as the constant times the integral of the

varinhle, Thus,

I=4 [cv dx = cjv dx

In other words, all we neced do in this situation is bring

the constant outside the integral sign and then proceed to in-
tegrate the term c~mtaining the variable. For example,
géxzdx = 4jk2dx = gxs + C.
And, as you might exvect from the above formula, the

interral of a constant is riven by the formula:

I=5 , [J‘c dx = cx + C,

Tnis formula simply tells us again that the constant

can be brought outside the intesral sign until the integration
has been nerformed, then orought back into the term as a multie-
plier, Thus,

(8dx = 8fdx = 8x + C,
/

There is little more to he said about either of these
intesral formulas except to urse you to start memorizing them,
Yéu will use them frecuently in integral calculus. They are
sure to appear in one form or another on the tests your classe
roon teacier gives., Learning the vasic differential and inte-
=ral formulas is about like learning the rmultivlication tables
in arivhmesic; ™moth are essential if you expect to get very

far in your study of mathematics.
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covw Lot'a consider the case where we have two variables,
both ot wihich are, in turn, variables of x, The rule for

inte seating in this ease is: “he dinterral of the sum (or

difference) of two variables, u and v, is the sum (or differ-

Ll ol

ence) of the inte-rals of the Tunctions senarately,

Since this probably sounds like douhle-~talk to you,
let's write it down in symbols at once and the meaning will,

I an sure, becone clearer:
I-6 f(u + v)dx = JCJ dy = fv dx

18 - w? A _ P 4
For exanvle, (7 = x")dx = | x7dx + ) x dx

L4 )
%r + %; + C.

S0 in addition to the three intesral formulas summarized

on nase 91 we now nave three additional formulas, namely:

I=4 The interral of a constant fcv dx = cfv dx
times a variable:

k-3
|
U1

The intepgral of a constant: fc dx = ¢x + C

=i
]
Ch

“he intesral of the sum of f(u + v)dx = fu dx +fv dx
two variables:

Use all «ix foruulas, as needed, to perform the

Sollowin intezrations:

T f Zdx = 4, f—%:-:zd:-; =

1

-"’,-

2ura to raze ¢4 to check your answers.




S

’

ans, 1. %T + C 5. C
wd 3
2. 2".« ﬁ.;-' . 2{—---);-:—.
+ C be S C 6. 3 7 + C

Let!'s list here the six integration formulas we have

discussed so far so that you will have them all in front of

L]

you in one place:

w
I-1 fxndx = = l ¢ xn'*'1 + C
I=2 fdx = X + C
I=-% fo dx = C
I=4 fcv dx = cfv ax
I-5 j cdx = ¢ex +C
I=5 =

Iku+v)dx

fu dx + [v dx

¥eep in mind that we have obtained all the ahove forrmulas
by the rairly simple vrocess of thinking backwards from what
e alfeady know about the original functions from wnhich each
vas derived,

¥een in mind also that it is one of the (at times) frus-

+tarng

tratin~ Zaets of inte~ral caleulus that von ean't inteerate

1oty

onvtiine Holors the raverse nrocees of Aifferentistirs =ovna

toin~ alze has wislded the avnression voun wish to interratal

e ¥

Mhis is way there are, indeed, some functious we con't

intterate Dbecausz no one nns yet heen able to find the ex-

nracsions ivom vihieh they were derived

.
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5o rav the intersration formulas we have worked with N
have all been or the form ...dx, that is, they have all dealt
with rairly simple, direct functions of x., However, we olten
Tun into the situation where we need to be able to interrate

tne tunewion of a function., Thus, if y is a function of v,

and v iz a Junction of x, we say that y is a funciion of 2
functiom,. Althoush the exnlanation may be new to you, the
idea snould not be entirely novel since we have used the

letters u and v to represent functions of x vefore,

hus, corresponding; to the formula‘f%ndx = E&ﬁ'xn+1 c,

we nave the formula:

- _ n.. _ 1 n+1
I-7 vidv = TV + C.
Since v° represents some function of x, what this ’

formula is saying to us is that to be able to integrate such

2 function we nust have the derivative of v with resnect to x

to start with! That is, we must have dv.

FPor example, supvnose we wished to intesraie tne expression
2
2x(x” - a2)2. Formula I-7 tells us we cannot do so unless ve

nave the derivative of v in the invegrand., Now v in this case

m

(x2 - az), neince dv = 2x and = 1o and behold! =~ ve do have

}J.

-

2:t as vart of the intezrand, which means we can verform the

interration, .ieccordingly, Irom formula I-7

H]
!
P
“
n
]
®

Find: jéxz(xp + V)de =

, . Lo e T L i Al | .
en o pave 95 vo easelr rovr answer,
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T.et's 0o over that last nrovlem together,

You were asked to find: f‘)x?‘(x3 + 7)2dx.

"he Tirst thing we need to check on is whether or not we
have dv == that is, the derivative of (x3 + 7) with resnect
0 ¥ -= in the integrand, Do we? Yes, since the derivative
of (:c’5 + 7) is 3x2.

/nile it is true that what ve actually have is 9x2,
this can be easily adjusted vy dividing 9x2 by %, making it
3x2, and offsetting this division by placing a 3 outside the

interral sign as a multiplier. This gives us

-

5 [ 3x2(x7 + 7)%ax.

Iiow, integrating according to formula I=7 we get

o

Sesx(%” + 7)° + C

v

or simply (x3 + 7)3 + C,

There are many, many tricks to intesrating and you will
learn a ~reat number of them in your regular course -- enoush
to convince vou that integration is almost as much an empirical
art as it is en exact science!

¥Yote: The foregoing problem, as well as the examnle
~hat vreceded it, could, of course, have been solved
simply by expanding the integrand, intesratinz cach
teowz arnd then 2dding the results, The purpose in using
tne integration by parts technique was to give you

vractise in its application.

ow turn Lo the next pazge and we will look at one more

Trick,
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Lincee we have alrceady found that the darivative of the
sinc is the cosine, it probadbly will not surprise you to learn

that the integral of the cosine is (minus) the sine. Thus,

I=-8 fcos vdv= sin v + C, and |sin vdv= = cos v + C.

Apart from identiiying this as invegration formulu I-8
there is little more to say about it == except to caution
you to remember it when you need it., And you will need it
in the exanple below,
Now for the trick we spoke of,
There is no direct way of integrating the product of
two functions of x, such as u and v, However, formula D=7 from

poge 52 enabled us to difrerentiate their product as follows:

2%1.’(‘”) = u%—:% + V-g—;"-:-

and integratior of both sides gives us: uv = [ %xz + ‘( v%%,

Rearrangil.; the terms of this equation to read

v-g% = UV = ug—;t,- and dropping dx in the denominators
(since it is implicit in the expressions du and dv) we get
I=9 J(v du = uv = fu dv.

Trhis may not impress you as much of 2 mathematical tri-
umpn, dbut it oftan turns out that udvmay be found directly
from basic integration formulas, even though v du may not. This
trick is called "integration by parts." Here's how it works.

Zxamole: Find |xcosxdx, Here v = x, du = cos xdx hence
u (the intezral of du) = sin‘ x (from what we learned above),

and dv = ¢xX, Therefore,

(xcosxdx:fvdu
= uv -fudv
= Xsinx = ('sinx dx
o

= XeoinxXx + cosx + C.
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Intesration by parts will become meaninsful to you and
oroperly annreciated only after you have used the techniaue
1o solve &:number ol vroblems that would be difficult or
imvossible to handle in any other way.

You will have vlenty of opnortunities to apply this
netnod in connection with the exercises in your classroom
text, so we will not attemot to work with it further now.
AT least it should look familiar to you when you next en-
counver it,

Sneaking of looking familar, does the integrand in the

following expression seem familiar? Can you identify it?

1 -
57(1\! = ?

av represents

<1=

2urn wo nase 100 to chael:r your answer,
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aovle of Intesrantion IFormulas
n _ 1 n+1 c
I-1 x'dx = T X o+
I=2 fdx =x 4+ C
) fo dx= C
f -
Tt vaax: cf@dx~+c
T=5 fc Ax = ¢cx + C

I-6 f(u-i-v)dx = fu dx +{v dx + C

1=8 fcosvdv: sinv+ C, andfsinvdv:-cosv'+c

1
]
O

—
<
Qs
fed
]
fof
<
]
<
(o))
<
-+
Q

fnd now it is time we looked at some anmiications

ol intesral caleulus, In The unext chanter we will consicer

W

tre distinction metween definite interrals end indefinite
interrals and see how the nrocess of interration can e used

©vo Tind, for examnle, the area under a curve.

.. - oy e
Turen ve naze 101,
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NG, %&v irevrecenta (hie derivative of the lorarithrmic
' . X . g 11
Sunetion v to the hase e; that is, é&(logcv) N % or %f .

Perhans you remembered the log function froin our dis-

cussior on vege 71 of now to find the derivative of a lo#-

ariivhmie function., In any case it is another nerfect example

of the fact that we cannot intersrate an exnression unless we

firs: ore able to recornize it as the derivative of some other

snecifiec Turnction!

iTere is the complete intecration formula for a logarith-

mic funetion:

10 v .
I=10 j’v = 1ogev 4+ C

If you get the impression thut we are moving rmuch nore
rapidly in deriving our formulas for integral calculus than
we did for differential calculus, you are quite right. The
reason Ifor this 1s, as we have mentioned before, that we
cannov derive integration formulas as we do differential
formulas by the delta method. Therefore, we can only fam=-
iliarize ourselves with the integration formulas developed
by others (research matematicians) over a period of many
years. Qur job is simply to recognize when and how to

use them!

How if you will turn {0 the next page you will find a
list of the ten integration fornulas we have discussed.
These are, of course, only the most elerentary ones, but

the only ones you need pe concerned with in this bvook,
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e oo,

The type of intesrals discussed in the last chapter are

xmown as indefinite intecorals., Thnis is because they are of

(see page 29)
the meneral form f(x)dx = F(x) + ¢, hence no matter what value

we sudstvitute for x the value of the integral is still indel-
inite, since the constant of integration, C, can have any arbi-
trary rfixed vaiue, Hence the table of integrals apvearinz on
nage 0§ actually is a table of indefinite integrals,
ilowover, as surrested earlier, in specific applications

the volue of an indefinite intesral can alwavs he Tound by

- o a9 o s

deternininz its constant of intesration under the svecific

conditions of anv ziven problen.

Tnis leads us to the concept of the definite interral,

end it is definite integvals we are going to discuss in this

chanter. Vhereas the indefinite interral is a function ob-

tained oy working backward from its derivative, the value of

-

the definite intersral is a pumber, defined by a limiting pro-

cess, as we shall soon see[f

The indefinite integral is then, in a sense, the link
vetween vne derivative and the definite interral,

o nake sure you are cléar as to the distinction between
Taese two tyves of intesgral, indicate whether you coasider the
followin~ statement true or false,

An intenral is indefinite so lon~ as it containz

a constant shat cannot ve defined, True or false ?

Tara to pase 102 to check your answer,
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Vie mentioned quite some time apgo that one of the problems
early mathematicians found difficult‘(imnossible, actually,
in o precise sense) to solve was that of finding the area under
a curve, Integral calculus lends itself nerfectly to the solu=-
tion of this kind of problem. To find out why, consider the
illustration above, |

Supnose we wish to find the area A under the curve --
that is, between the curve and the x-axis == ana between the
ll\:nt't': - . .
axsyaanas ¥ = 8 and X = b, ILet's start by considering a very
small vart of that area, namely, the segment shown above as
beih@:Ax wide and y high,

Now if we can assume for the moment that y is the average
heirat of that small sezment (that is, the averase of Y4 and yz),
then the arez ol that tiny rec?angle would be given by

AL = yeaAx,
Note: vy isn't really the average height nor AA a rectangle,
dowever, &x is very small, and as we let it approach

zero == yhich we will in & moment == y becomes the

nei~ht and AA pecones a rectancle,




Wo JGnmd the arca of AN =~ that tiny portion of the

whole area, /A Just as we would in any recctangle, by
multlplyljf’tne base times the height, Once more, then,
AA = ye &x,

which wa can alco write as 2ﬁ = y.

Now\}{\ye take the limit of this function as x—s0, and

AN %
Y4 and Yy ._\)ref/, we .@;et'Axl_l;lOu = %v;, or dA = ydx

Let's look at that last equation for a moment because

it is nmost important to what we are doing and therefore most

imporftant that you are clear as to whet it savs,

i = ydx_savs that each little bit of the area under

the eurve is equal to the width of that little bit. Ax,

rultinlied by the heicht of the curve, y, at each

sveeessive voint alons the curve,

This tells us that if we add up all the little slices of

area vader the curve we should arrive at the total area of A,

Have you any idea how we will zo about adding thenm un?

1f you rhave, write it down here:

vmon Lo 2o T o

#Tuor to sasc 38 o reviow the rolationchin bhetwsen o ratio
- ]Q'
Jugh oo e ond

- . . { .
2 the derivative ~g, in case you rave forxotten,

Do creelr your ansuver tuim to pase 104,
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aag,  Interrate both sides of the equation,

Thatts ri~ht: Trtecrate both sides of the ccountinnm,

Thue ‘(éi = [§~ax, or i Jﬁj 3,
o i

Trnto~rasion hanien 11 i2 a enmiine ure vroeens! That is
AL . ’

the dosired quantity is obtainaed asz the limit of the ocum when
the nwider of its parts is increased indefinitely. In this
case we wizsh vo sum up all the small bits of area to get the
total area A,

Sinee y cimply represents some function of x, we can
replace it with the more rereral exvrescion £(x) as we
Irequently have done before, They mean the came thinz, Thus

we can write 4 = .ff(")du.

We are not throush yet bYecause we still have not actually
evaluated the integral on the right-hand side for the specific
limits X = z and ¥ = b, which pnle it a definite intesral.,
(Remerber we set out to find the arca between fhesc two limits,)

It%}s customary to show these limits in this way:
‘(f(x)dx, ssuninz that 2 is smaller than b, This is

read "the intezral from a to b of y dx." Ve are not going

l

to turden you with the »nroof, but it turns out that

J‘f(x)dx = Ib) - P(a),
Oz, DUTting it in words Intesrate the differential of the
arca under the eurve and sunatitute in this, first thﬁ unneY
Linit and fThen the lower limit for the va”iablc, and subtract
the last result from the firss.

The constant of intesration, you will note, Iisapnears

in the zubtractlion and therefore nced not %e considered,
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\s 1o often the case, you will find evaluatine definite
interals easier to do than to recad about, But before wve

stary lat's write down our formula arain so that we will have

it ri~ht in frgSt of us when nerforming the evaluation.

j‘f(x)dx = IM(b) - #(a)

a
oxanvle:  Find the value of the definite intezral
2
.f 3x3dx 2
° —
Sten 1, Interrate A%.

5 (2)4
Stev 2,  Substitute uopper limit: F(b) = 5(2 .-] =12

step 4. suvtraect the last irom the first:

Sten %, Substitute lower limit: 1(a)

]

Mb) = F(a) =12 = 0 = 12

Hence the value of the integral (area under the curve) is 12,

¥ramnle: Tind the value of the definite integral

o)
J:(4x - x3)dx

VA

4

Step 1., Integrating (from formula 2x2 - 2;] '
T-6, pate 93): 4 °

tep 2,  Substituting (here we will comoine steps
2, %, and 4 above):

4 4
E(z)2 - %—] - [2(0)2 - 9
or 8 4 0

Get the idea? Now here's one you can try 3on your ovm,

Pina the value of the definite integral ftlx3 - x2.

]

Turn to pare 105 to checlk your answer,
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Did you get the correct answer? Here!s the solution
Just in case you had any trouble, 3

Vie svart with the definite intesral jf4x3 - x2.
(o]

intesrating we met: AK4

et - A(3)4 33
And substituting limits: -(Z - %?

T

Wnich gives us our answer: 81 -9 = 172,

Now it 1s time to anvly this procedure to findin~ the
area vbetween two ordinates under some recognizable curve
so that you will see just how the whole concevt works in
an anplied way,

50 look at the next nage and we will consider the problem
2

(&
b,

Tinding the area under the parabvola y = x“, both with re-

lation ©o the x-axis and the y-axis, just for practice.
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)

D)

}.\.

X

sxammie 1: Find the area A under the curve y = x2

detween the limits x = 0 and x = 3,

(v = x2 was chosen for f(x) in this example because it

easy to intezrate and has some other advantages we will
discuss later.)

3
Jdefinite integral: A1 = ‘ﬂxzdx 3
' 2 °. %2
Integrating x“dx we zet: > 5
o
i 1
e it 53] [ o3
from waicn: A1 = (& - ;jr
. 271 1o,
Or: A :[—-.—- -LO{: .
1 3 d e

fine, then (in whatever units), represents the area

2 and the x-axis between the ordinates

under the curve y = x
X =5 and X = 0., low let's consider the area between the

came curve and vhe yeaxis,
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Oy
wvannla 2+ You recall we said O

. . . . 2,
that the fuaetion y = x° had

some other advantaces? One of
then is that we can easily check

tae resulis of our integsration,

cow? It is anparent that the

entire area, A, of the rectangle
vounded by the x-axis, the y-axis,
and the limits x =3, y = 9 is

5¢9 or 27, And since we just

Tfound A, = 9 then, since 4 = A1 + A,
A, should equal 18, Let's see if

-

it does.

This time our A is equal to x dy, since we are using

3

a horizontal instead of a vertical segment,

9
Y""I'i-be 1&2 = j <z d:‘r
& o
or, since x = y*, AZ = vidy
(-]
. 9
. .:‘: - 9 Py
Intexrating y“dy we get: E?y’/z = [% .
(-4
Or: AZ =18
Hence A

Hence we can

1§

'1l+ AZ = 27, and we have verified our results,




,,_ BEST COPY AVAILABLE

%
1/%

or

=
i
t

2

wow it's your turn.

Above is the oraph of a slizhtly steeper exponential
curve whose shape is# ziven by the function y = x3, consider-
ins x as tne independent variable, However, if we think of
v as the indevendent variable then, takins the cube root of
noth sides of the equation, we fet x = y1/3. You will need
voth these expressions, just as we needed them in our two ex-
amnles on ithe nrececdins naces,

rronlen: Prove that the total area A -- made up of the
area between the curve and the z-axis, A1, and the area be-

-

tiecen the curve and the y-axis, AZ -- is 81, (To do this you

-,

7111 integrate the function v = x’ between the limits x = O

and X = 3, then integrate the function x = y1/3 for the limits
v =0 and y = 27, then add your results together.)
ans, A1 = = =

[

N
N
]
]

A

mar to naze 110 to check your answers
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o o
81 243
A4 + A, 4 = é%i = 81

At this veint you misnht prooerly exvect a few more
exarnles or vrovlems showing further avplications of the
definite interral. If so, yon will be disappointed, forthis

as far as we spnall 7o with intesration,

O]

Mhe reason for stooning here is that althoush there are
many examnles that we misht work together showing the use
of intesration to find areas under curves, the lengths of
sectors, the volumes of many kinds of geometric solids, the
cené@ids of bodies -- to say nothing of the applications to
electricity and electronics == nearly all of these would
recuire the use of intesral forms with vnich you are as yet
5ti11 unfaniliar. And, alas, there is no time to examine
<hem in this brief introduction to calculus., Hovefully,
you will have time to do so in your recular course.

Syt now it is time instead that we review what we have
covercd with rerard to intepral calculus.

Accondin~ly, if you will tvrn to vage 111 we will begin
our sumnary of this asncet of the sudbject and follow this with

srief self-cuiz that will enable you to see how well you

)

nave done -- and merhaps be guided to review as necessary.
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exoression that auvnears
adictely atser the inte-
sl ia ecalled the

intarraad, that is, the
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Sunesion to be interrated.
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.........

tértrand

“nen i Terentiatines. an
axnrossion, any cons tania
in it ‘roa out. “hereifore,
notc knowin~ wnat conotants
nway nave been in it ori-
inally, when we intecrate
v suretion we must always
the leitter C to renre=-
v tne "coastant of in-
[ra tion," a collective
ri Jor wastever constants
y nave veen in the ori-
1 exvmression,
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88

o 4
5> _ ¥ .
X = 7T 4+ C

The symvol F(x) olften is
used in inte~ral czalculus
to renresent the orisinal
(un01xler9nolauea) Tunc-
tion a3 an alterrate to y.
Slﬂl‘urly, 2(x) olten
serves in nlace o7 ¥' to
wenresent the ﬁerlvatﬂve.

88

41 ¢

terration is, in ceneral,.

In
& nrocess thal has ¢
nerlorved by think
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then )rnxn'1 =B+ 0

P Yo .;.. )

2 simmle ex=
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1 Zorm v Contt

e uw3e ine Iror
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89

\,\l

If £(x) = 3x

7 Y4
then |3xZdx = leemm
sX-dx P
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2oview of interrrl caleulus (continued)
s . Pore -
Raview Iten A mxamnle
TG.L »

2o dnteopral of 1 (written as
v with the 1 understood)

-
PN

ecunl to x plus a constant,

N

J’dx =

x + C

e interral of 0 (zero) is a

e ie o
gansTant,

91

10,

o interral of a econstant
ines a variable is the same

3 the constant times +he

inva-ral of the variabdle,

92

vadx = cfv:’x

j?.xdx = 2fxdx= :(2 + C

Le interral of a cons

! stant
S voq V the formula:

92

f3dx= 3% 4+ C

12,

inte~ral
differerce) of two variables,

¢ is zimnly the sum
rerco) ol the inte-
~rals of the functions sena-
rately, This ruvle tells us
rov to a¢d or subitract inte-
srals, Trus,

f(ua—v)ax = fu v+ J.v dx

93

52x2+ x3)dx

=t is ossible to interraie
the funstion (often redre-
sented oy tne letter v) of

. O xaermmle, the intesra-

0 SOne nower is
milay to the interrae
oC * to 2 nower., I3
resvires, however, that we
B tne_Clexriva qur e 0r v

’d' ’J <-l

TR AN 0 stere Withl

------

95

dv m

[

v
av

anenc

(x?

av

eans a'i

(x3+ b3)2dx = ?

P4 4
= (x? + b”)

2
= 3}{)
2

x3+b3)2dx =

fo

2 4

A2

3
) ’!' Co

%
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coview od intesend enlenius (eontinued)

N

. . e .
xoview ftem xmﬁe ixamnle
PEAPOAP = EO G @ 2 AN P BRI P4 s o B Lt ond re r LJ R o . o]
14, hen condTronted with the tacsk |97 Tind jx oin zdx
o interrating an exnression .
: X . ' , . He: = du = sinx dx
Tavolving o funetions or x ere v = X, in ’
(viieh we desicnate as u and v) dv = dx, and
73 use the following formulas X
wva use the followings formula u = ,(Slnde = =008 X

jv du = uv -f.u dv hence:
fx sinxdx= =x cosx +

[cosxdx

= - xc0sX 4+ Sinx+ C.

15, Remenberin~ thet the derive 1CC ?
Ative ol the lowarithnin of v Pind | ===z dx,
1o tne vace e is 1=x%
1dv . av ;
e o oare 131N wew 4 ) o_ﬁ'- .
vox or just w » We recog Here v = (1 - xj)
nime oS inoly ; e
nime correcpondinely that and dv = -3x2,
L7
J;V' nence Z ax =
—— == cr “ 4 -

(multinlyins rumerator
and denominator by =%
and brinsine the =3

in the denominator out-
side the integral sizn)

= = Moz (1-%?
or = 310;,6(1 x’) + C.

16, Te value of an indefinite ° -1 101
interral can alwavs e Tound
hr determining its constant of
intearration vnder the snecific
conditions of any =»iven nrob-

lem,
17, Tre value of the definita 101

intexral is a nurher, defined

oapran e p s Bomoe "

2y a lini<ing process,

i

18, Interration, veins basically 102,
a suil.ine nrocess, it caa ve 10% (See paces 102-109 )
vsed to find {the area under
o curve,
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19, ‘2o find the value of a dale
inrtte inserral vebtween two
tlven lindifts,a anA b, ner-
Torm the intesration and
sunsititiute in this, firsi
Tre uwner linit and then the

lowver limit Tor the variable
a~d surtract the last resulsg

from tne firsi,

&>
J:f(t)dx

-

N

-

5, = ¥(a)

Toendenlas (conlinnea)

P, e

.y°l"-‘.'l'..o

1104,
105

Bmm‘mum -114-

\ e Y
mnxamnle

ya

"

(;x’dx

i

e
= 16 - 1
= 15

20, Tindiny tne wrea nader g

curve is acconnlisned by
means of tne nrocedure
saovm in isven 19 avove,

107,
108

(See examples on pares
107 and 108)

and now, navinsg comvleted the review, you should bve
curicus 0 see nhow mich you nave undersiood and resained

e,
ol

on

e susject of intesral calzulus =- t0 the extent of

our oried introduction to the sudject.

—

Mirn to
tnatv srnould

naze 115 and you will find a short self-quiz
neln you answer this aquestion.




BEST COPY AVAILABLE

peliemidn oo thae Basic Conceots of Interral Calculus

——— . 6o

(Circle the correct answer or £ill in the micsine information)

p
s = a4,
1, ind: ‘jx‘ax ans.,

2, Intesration is the inverse of

PR . . we Fals
dizferentiation, True False

L

- 2 . .. .

5. 53}: dx is a(n) . definite intesgral
% indefinite inte~ral

4, 'What is the intesral of zero dx

5. Draw a circle around the intesrand 3
in the followins exrression: 4x-dx

-

0., Tinda: jpax ans,
7. The Tollowins is a definite interral:

Jéx(xz + 3)dx . True False
€. In =eneral, integration is a nrocess |
trat must oe performed vy thinking True  False

sackwaxrds,

11, e value of the definite integral
is a number, defined by a limiting True False

nrocess,

12, The value of »n indefinite integral
can always %2e found by determining

]

constent of intesration under True False

[ %)
cl
n

<D

tne specific conditions of any

siven provrem,
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seli=uuiz on Interral Caleulus (continued)

e

1%, Complete the followins integration

o n
- formulac: ‘rv dv =
2

=4
14, fx’dx = 203 True False
[+ .

15, It is one of the facts of life
of intesral calculus that you can't
intesrate anythiag until the reverse
vrocess of differentiating something True False
else nhas yielded the exnression you

viant to interrate.

16, Tne followinc exnression can be
oy means of formula I-7 (p.95),
intesrated, fiust as its stands: True  False
2 .
»(x" + 4)dx
17. In intesratinz an exvression such as
fkndv we ust nave the derivative True TFalse

of v with resvect to x to start with.

(Does your unswer to this vproblem agree
with your ansvier o the previous
nrovlem?)

18, 'ind the numerical value of the

4
followins intesral: X ax. ans.__
N

12. 3ecause inte<ration is bvasically a
evaluatit 2

- _— nrocess it can bhe nrecise

used vo find the arez under a curve, sumning
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solr=onin on Interral Caleulus (continued)

20, e corntant of intesration, C, is used to
rovresent:
(a) ‘’he name of the mathematician, Clavius,
wio first develoned this. concept.
(b) “The particular constant term that was in the
oricinal exnression.
(¢) Any constant terms (collectively) that may

have vpeen in the orisinal expression.

"0 check your answers turn to pasge 118,
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Mimvoras to Self=0Ouiz on Intecral Caleculus

e

W0 PLare ref,
1. '-\,_')-"‘ + C B
2, “rue - 85
5. definite intesral , because it has stated limits 104
4, O 91
5, Your circle should be around: 4x3dx 86
0 X + C 91
T. alse, becar e no limits are ziven 104
8. Prue ' 90
2

9. L& .o | 92
10, J-(x - xB)dx =fx dx -fx3 dx = gc; - :’-4,-1» + C 93
11. True 101
12, True 101
13.’(;ndv = Er{Eff vy ¢ 95
14, True 105
15, Prue | 94
16. Palse, decause you don't have dv, the derivative of 95

v with respect to :, which in this case would be 2x.

Hence a 2 would have 1o be inserted before the x as a

multinlier and a % placed in front of the integral

sizn to comvensate, In other words, the entire intesral

would have to be multiplied )2 % before the integration

counld be performed,
17. True (see ahove) | 95
18, 22 or 18% 105"




19, summin-eun 104
20, Auy constant terms (collectively) that may have 88

Leen in the orizinal expression,

dow that you have completed the two quizzes, check back
and see how many answers you got correct altogether, IFf you

rot 35 correct (80%) you did well., If you got 40 correct

vou did verv well,

In narting let me remind you once more that the entire
emnnasis of this book has been on introducins you to the
very nasic concents on which differential. and interral cale-
cuius are fonaded, While no attemnt has been made to develomn
tnese concents or to show their nenrly limitless annlications
in hotn theoretical and anvlied mathematies, the author
sincerely noves that this briel exposure to the subject will
av least have servad to remove some of the mysiery and terror
vnat usually surround it, Also that it will heln relieve
Sorie 0ol the confusion and pressure that seem such an inevitable

vart of every first course in calculus.,

+f so, my nurpose will nave been achieved,




CHAPDIR 8:  HISTORICAL PERSPECLIVE

The word galculus comes from the Latin word meaning
pebble, because in sncient times people used pebbles to
count with. And even though the name has this historical
connectibn with early mathematics, it has little logical
connection with it, since calculus wes developed in fairly
recent times after much intervening growth in knowledge.
The name given this branch of mathematics by one of its
inventors (Newton) is descriptive of its field of application.
Hde called it fluxions, referring to the fact that calculus
deals with change. The subject today == often referred to
as "the calculus" == is a body of rules for calculating
with derivatives and integrals.

By 3000 B.C. the peoples of ancient Babylonia, China
and Egypt had developed a practical system of mathematics.
They used written symbols to stand for numbers and knew
the simple arithmetic operations. They were able to apply
their knowledge to government and business snd had developed
8 practical geometry useful in engineering snd sgriculture.
The sncient Egyptians knew how to survey their fields snd
how to make the intricate messurements necesssry to build
large pyramids. But this esrly mathemstics was applied
rather than pure. That is, it solved only pracﬁical
problens,

The Greeks took the next major step in mathematics

when, between 600 and 300 B.C., they becsme the first




veodle to separate mathematics from pratical problems,
Geometry rfor the Ifirst time became an abstract exploration
ol space based upon a study of points, lines and figures
sucn as triangles and circles., Interest in mathematics
turnad fo logical reasoning rather than to facts found in
nature. IV became a blend of mathematics and philosophy,
since the Greeks were mainly interested in geometry as a
means of aavancing logical reasoning and therefore developed
the subject along this line.,

Lven at this early date, however, these "philoso-
maticians" ran into a number of puzzling problems. Some of
these are embodied in the paradoxes of Zeno (495-43%5 B.C.).
One involves a mythical race betweeh Achilles and the tore
toise., Even if {the tortoise begins the race with a 100=yard
start, if Achilles can run ten times as fast as the tore
toise it seemed pnerfectly apparent that he would overtake
the tortoise. The problem was to disprove Zeno's "proof"
that the tortoise would always be ahead., He reasoned this
way: wnile Achilles is covering the 100 yards that Separates
vhenm atv the start, the tortoise moves forward 10 yards;
while Achilles dashes over this 10 yards, the tortoise plods
on a yard and is still a yard ahead; when Achilles has cov-
ered tnis one yard, {he tortoise is still 1/10%th of a yard
ahead. Thus, by dividing the distance run by Achilles into
smaller and smaller amounts, Zeno argued that he would never
vass the tortoise., The fact that an infinte set of distances

co>uld add up to a finite total distance was the unknown fact
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TaAY made Lono's "proolM appear plausidle, It was not

wntil & vevier waderstonding of limits was developed that

iv became possidle to demonstrate the fallacy in Zeno's

SuT there were other prodlems as well arising from
vals laci of a doeirine of limits., Most of these involved
caleulating fthe measures of curved figures: the area of a
circile or of tne surface of a sphere, the volume of a
Sphere oxr ol & coae, ard similar prodlems, ZProovlems of

tals kiand were treated by what came to be movn as %he

Mobnod @ dxhautions, actually a method of limits whnercin

vae cdrcle was regarded as a limit of o serics of iaseribed
polysonc, ©his method cnadled Archimedes (287-212 2.C.)
To arrive atv  very close approximations of the correct
values in maay cacco,

A relafed nethod of limits, much more general in foxa,
is one ol tre essential features of calculus today, Another

-
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vrodlem, that

3

uous movtion, also was the su
of muen speculavion, The Greeks made important concepiual
consrivutions JToward an underst anéing of motion (partly
wnder the pressure of Zeno's paradoxes,no doudbt)., But

nov unsil the development of calculus was there availcdle
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Zuclid, who lived about 325 B,C., was one of the fore=
most of the Greek mathematicians., It was he who left to
posterity one of the greatest works of all time, His book,

Ihe Ilements, is a summary and arrangement of all the mathe-

matical knowledge of his age. It is of particular interest
vo us today because it contains most of the plane geometry
taught in our present~day schools., And although Diophantus
(c.A.D. 275) worked on numbers in equations, Greek mathema-
tics was developed essentially without algebra., It was not
until after the creation of analytic meometry in the 17th
century that the way was opened for the advances in thought
that marked the beginning of rapid progress in the study of
motion and other types of continuous change.

Apollonius, who was known as the "Great Geometer," is
believed to have lived during the period 260-200 B.C. His
greatest contribution was to the study of sections cut from
a cone Dy passing a plane through it, He called the result-
ing curves ellipses, hyperbolas and parabolas, just as we
do today when we study them in plane analytic geometry,
althaough our method of approach is quite different from
that used by Apollonius.,

Affer the fall of Rome in A,D, 476,Burope saw no new
developments in mathematics for hundreds of years. The
} rabs, however, preserved the mathematical tradition of
the Greeks and Romans. Then, during the Middle Ages, one

of the greatest discoveries in the history of mathematics




appearcd when mathematicians in India developed zcro and
the decimal number system. After A.D. 700 the Arabs
adopted these inventions from the Indians and used the new
numoers in their mavhematics., The Arabs also preserved and
transiaved many of the great works of Greek mathematicians,
After 1100, Luropeans began to borrow the mathematics of
the Arab world, including use of the decimal number system
ror businress and to study Arad works on algetra and geometry.
Gradually intveresi in pure mathematics grew. During
the 1500's nmuch ploncorln work was done in the development
of alpgebra, ineluding the use of letters to stand for une-
knovm numbers. The basic concepts and procedures of trigon-
ometry also were developed. Many more advances occurfed in
the 1600's, including the invention of logarithms and the
development of new methods for algebra., A major event was
the pudblication,by the brilliant French mathematicion Rene
Descartes in 1637, of the first work on analytic geometry,
o
for the first time linking algebra and geometry in a pre-
cise way. The rectangulur coordinete system we usd, {oday
is called Cartesian in honor of Descartes, who used ¥ modi-
fied form of our present coordinate system in his work.
Descartes' metnod, which in our present day termin-

.
ology relates the distances of a voint from two ihﬁgg;egf—
ing liner by means of an equation, opered the vay for the
advances in thought that marked the beginning of rapid

vrogress in the study of motion and other types of con-

tinuous change,




neapite advances made in the field of mathematics
Irom tne tine of Archimcdes until that of Deccartes ~-
advances in geometry, arithmetic, algebra, astronomy and
dynanies -- the intervening centuries actually were among
the least vwrolific in the history of nathematics. It was
the creation of analytic geometry that finally made vossible
the appearance of a revolitionary new idea that was to un-
lock thne door to an entire treasure house of new mathematics.

Caleculus furnished that key.

it was Sir Isaac Newton (1642-1727) and Raron Gottfried
Wilhelm von Leidbnivz (1646-1716) who, working separately,
invgnted the calculus incependently of one another. It is
anovher instance of the time being rive for the develovment
of an idea, and the ideza came,

Calculus is a natural outgrowth of the avvliication of
alzebra and analytic geozetry 4o certain problems in physics
ond seometry., As we have seen, some of these problems had
been considered by the mathematicians of ancient Greece,

== how o aaalvae it and how to describe it accurately -
The aavure of continuous motion/was one such oroblem, ana
The snovject of much speculation, Although the Greeks did
indeed make importvant conceptual contributions toward an
understandinzg of motion, it was not until the development
or calculus that there was available a workable, systematic
metnod for describin~ such things as velocity and accel=-
eration in qualitative and cuartitative terms,and for
raking analytical studises of various particular motions.

At first the vasic concent of calculus --ihe underlying




idea of limits -- was seen only dimly. Not until nearly a
century and a half later did the French mathematician

A.L, Cauchy (1789-1857) give the doctrine of limits its
final form, a doctrine that emerged clearly as the founda-
tion for much of the structure of modern mathematics,

Newton was not' only a powerful mathematician but also
a sclentist with a vivid and trained imagination., It was
his interest in the motions of the sun, moon and planets,
in tidal action and falling bodies —- culminating in his
famous laws of gravity and motion -- that led to his need
for some precsie, mathematical method for determining in-
stantaneous veloecity and for expressing the transient re-
lationships between time, distance, velocity and acceleration,
that is, a way to handle dynamic problems., The traditional
problems of finding +the tangent to a curve at a point, the
area bounded Dy a closed curve, and the volume bounded by
a surface also vressed for solution.

It is not surprising, therefore, that the two central
concepts that finally emerged are, as we have seen from the
foregoing chapters, interpretable in terms of motion and
area., The one concept, that of the derivative, is illus-
trated by the velocity of a moving voint. The other concept,
that of the integral, is illustrated by the area of a sertain

geometric figure having a curved line as part of its bound-

25

ary.
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It would not be fair to leave you with the imprescion
that calculus emer-ed full-blovm with Newton and Leibnitz,
Yany of their concepts that emerged almost as inspiration
had to be substantiated by rigid mathematical proof -- and
this took time, and the work of many other brilliant mathe-
maticians., Although the basic notions on which calculus
rezts have not changed to any great extent since Newton's
day, the techniques, applications and extensions of these
Tundarental idezs have been expanded enormously,

Pernaps you yourcelf will Some day add another chapter

to the history of the development of calculus, YWho knows?

¥ # #




